
Trials@uspto.gov Paper 38 

Tel: 571-272-7822 Entered: August 6, 2014 

UNITED STATES PATENT AND TRADEMARK OFFICE 

 

BEFORE THE PATENT TRIAL AND APPEAL BOARD 

 

SAS INSTITUTE, INC., 

Petitioner, 

v. 

COMPLEMENTSOFT, LLC, 

Patent Owner. 

 

Case IPR2013-00226 

Patent 7,110,936 B2 

 

Before KEVIN F. TURNER, JUSTIN T. ARBES, and JENNIFER S. BISK, 

Administrative Patent Judges. 

BISK, Administrative Patent Judge.  

FINAL WRITTEN DECISION 

35 U.S.C. § 318(a) and 37 C.F.R. § 42.73 

  



IPR2013-00226 

Patent 7,110,936 B2 

2 

I. INTRODUCTION 

A. Background 

Petitioner, SAS Institute, Inc., filed a Petition (Paper 1, “Pet.”) to 

institute an inter partes review of claims 1-16 (“the challenged claims”) of 

U.S. Patent 7,110,936 B2 (Exhibit 1001, “the ’936 patent”).  35 U.S.C. 

§§ 311-319.  Patent Owner, ComplementSoft, LLC, filed a Preliminary 

Response.  Paper 8.  On August 12, 2013, we instituted trial (Paper 9, 

“Dec.”), concluding that Petitioner had shown a reasonable likelihood of 

showing that claims 1 and 3-10 were unpatentable based on the following 

grounds:  

References
 1
   Claims Challenged 

Coad, Oracle Primer, and Oracle8 Primer 1 

Antis and Coad 1, 3, 5, 6, 8, and 10 

Antis, Coad, and Burkwald 4 

Antis, Coad, and Eick 7 

Antis, Coad, and Building Applications 9 

We have jurisdiction under 35 U.S.C. § 6(c).  This final written 

decision is issued pursuant to 35 U.S.C. § 318(a) and 37 C.F.R. § 42.73. 

                                           
1 
U.S. Patent No. 5,572,650 (Ex. 1005) (“Antis”); U.S. Patent No. 6,851,107 

(Ex. 1006) (“Coad”); U.S. Patent No. 6,356,285 (Ex. 1007) (“Burkwald”); 

U.S. Patent No. 5,937,064 (Ex. 1008) (“Eick”); Microsoft Corporation, 

BUILDING APPLICATIONS WITH MICROSOFT ACCESS 97 (1996) (Ex. 1011) 

(“Building Applications”); Rajshekhar Sunderraman, ORACLE 

PROGRAMMING: A PRIMER (1999) (Ex. 1012) (“Oracle Primer”); and 

Rajshekhar Sunderraman, ORACLE8 PROGRAMMING: A PRIMER (2000) (Ex. 

1013) (“Oracle8 Primer”).
 



IPR2013-00226 

Patent 7,110,936 B2 

3 

Petitioner has shown, by a preponderance of evidence, that claims 1, 

3, and 5-10 are unpatentable.  Petitioner has not met its burden to show that 

claim 4 is unpatentable.   

Patent Owner’s motion to amend claims is denied. 

B. Related Proceedings 

Patent Owner asserted the ’936 patent against Petitioner in 

ComplementSoft, LLC v. SAS Institute, Inc., No. 1:12-cv-07372 (N.D. Ill. 

Sept. 14, 2012).  See Pet. 58; Paper 6 at 2.  The related case is currently 

stayed pending this inter partes review.  Transcript of Proceedings, 

ComplementSoft, No. 1:12-cv-07372, ECF No. 44 (granting stay), 54 

(denying motion to lift stay). 

C. The ’936 Patent 

The ’936 patent describes a language independent software 

development tool having a graphical user interface, also referred to as an 

Integrated Development Environment or IDE.  Ex. 1001, 1:15-19.  In 

particular, the patent describes an IDE for exchanging, editing, debugging, 

visualizing, and developing software code for “data manipulation centric 

languages.”  Id. at 1:64-2:3.   

The Summary of the Invention describes the IDE as including, among 

other features, a visualizer that generates a graphical representation of the 

program flow, data flow, or logic of the code.  Id. at 2:34-49.  In other 

words, the visualizer allows for displaying code in ways other than a typical 

text editor.  A detailed description of a preferred embodiment uses a series 

of drawings, and corresponding text, to describe an exemplary IDE with a 

visualizer that can display source code using several different graphical 

formats.  Id. at 3:24-26.  For instance, Figure 9, reproduced below, depicts 



IPR2013-00226 

Patent 7,110,936 B2 

4 

“a program flow for a selected file, along with arrows that indicate the flow 

of data within the program flow.”  Id. at 3:49-51. 

 

Figure 9, above, shows visualizer 120 displaying source code.  Id.  Each 

program and data block of a code section is represented by an icon, program 

flow icon 126.  Id. at 8:8-14.  Program flow icons 126 are displayed in the 

order that they occur in the source code (id. at 15:56-59) and are connected 

by arrows that illustrate the flow of data (id. at 8:8-14). 

Visualizer 120 also is shown in Figure 17, reproduced below, showing 

“a data flow” for the selected program.  Id. at 4:12-13.   



IPR2013-00226 

Patent 7,110,936 B2 

5 

 

Figure 17, above, shows visualizer 120 displaying individual processes and 

data blocks, represented by program flow icons 126, in separate columns.  

Id. at 16:6-12.  The arrows that connect program flow icons 126 indicate the 

direction of the data flow.  Id. 

D. Illustrative Claim 

Claim 1, reproduced below, is the ’936 patent’s only independent claim: 

1. An integrated development environment, comprising: 

a document manager for retrieving source code 

programmed using one of a plurality of types of data 

manipulation languages; 

an editor for displaying the retrieved source code and 

providing a means for a user to edit the retrieved source code; 



IPR2013-00226 

Patent 7,110,936 B2 

6 

a parser layer which detects the one of the plurality of 

types of data manipulation languages in which the retrieved 

source code is programmed and which activates rules and logic 

applicable to the detected one of the plurality of types of data 

manipulation languages; and 

a visualizer dynamically linked to the editor for 

displaying graphical representations of flows within the 

retrieved source code using the rules and logic applicable to the 

detected one of the plurality of types of data manipulation 

languages and activated by the parser,  

wherein the editor, parser layer and visualizer cooperate 

such that edits made to the source code using the editor are 

automatically reflected in the graphical representations of flows 

displayed by the visualizer and edits made to the graphical 

representations of flows in the visualizer are automatically 

reflected in the source code displayed by the editor. 

II. ANALYSIS 

A. Claim Construction 

For purposes of the Decision to Institute we expressly construed the 

terms “data manipulation language” and “graphical representation of flows.”  

Dec. 6-9.  We construed (1) “data manipulation language” as “a 

programming language used to access data in a database, such as to retrieve, 

insert, delete, or modify data in the database,” and (2) “graphical 

representation of flows” as “a diagram that depicts a map of the progression 

(or path) through the source code.”  Id.   

In the post-institution briefs, the parties directly disagree regarding 

only the construction of the term “data manipulation language.”  Paper 16 

(“PO Resp.”) 10-11; Paper 24 (“Reply”) 1-2.  In analyzing the issues in this 

case, however, we have determined that many of the arguments purportedly 

directed to the proposed obviousness grounds are more accurately arguments 

regarding claim construction.  Thus, to properly resolve the issues presented 



IPR2013-00226 

Patent 7,110,936 B2 

7 

in this proceeding, we construe several terms not addressed explicitly by 

either party, including “graphical representation of flows,” “program flows,” 

and “data flows.”  We construe all terms, whether or not expressly described 

below, using the broadest reasonable construction in light of the ’936 patent 

specification.  37 C.F.R. § 42.100(b). 

1. Data Manipulation Language 

Much of this proceeding turns on the interpretation of the term “data 

manipulation language,” recited by every challenged claim.  In the Decision 

to Institute, we interpreted this term as “a programming language used to 

access data in a database, such as to retrieve, insert, delete, or modify data in 

the database.”  Dec. 6-8.  This interpretation is consistent with dictionary 

definitions from the time period of the invention.  See MICROSOFT 

COMPUTER DICTIONARY at 125 (4th ed. 1999) (“a language that is used to 

insert data in, update, and query a database”); Ex. 1040, 272 (THE 

AUTHORITATIVE DICTIONARY OF IEEE STANDARDS TERMS (7th ed. 2000)) 

(“A language used to retrieve, insert, delete, or modify the data in a 

database.”).   

a. “retrieve” 

In its response brief, Patent Owner contends that the definition we 

adopted in the Decision to Institute is too broad.  PO Resp. 10-11.  

Specifically, Patent Owner argues that a programming language that 

includes only the functionality for retrieving data would not have been 

considered a data manipulation language by a person of ordinary skill in the 

art.  Id.  Patent Owner’s declarant, Ivan Zatkovich, testifies that an SQL 

[Structured Query Language] SELECT statement—which retrieves data 

from a database—“does not alter the data in any way and thus does not, by 



IPR2013-00226 

Patent 7,110,936 B2 

8 

itself, perform any manipulation of data.”  Ex. 2001 ¶ 19.  Accordingly, 

Patent Owner proposes that our interpretation of the term “data manipulation 

language” be altered to either remove the word “retrieve” or “qualify the use 

of the term retrieve by stating that the retrieval must be followed by some 

manipulation procedure.”  PO Resp. 11.  Petitioner disagrees, asserting that 

Patent Owner’s proposed change would result in too narrow an 

interpretation because retrieval of data does constitute data manipulation.  

Reply 1-2.   

We decline to make Patent Owner’s proposed change.  First, this 

change does not affect the substantive analysis in this case.  In other words, 

our decision on patentability is the same whether or not we adopt 

Petitioner’s proposed modification.   

Second, we are not persuaded by Patent Owner’s arguments that we 

should depart from the dictionary definitions, proffered by Petitioner’s 

declarant, Dr. Nick Roussopoulos (Ex. 1015 ¶ 48), and upon which we based 

our preliminary construction.  For instance, during the oral hearing, Patent 

Owner conceded that retrieving data from a database is a type of 

manipulation.  

JUDGE TURNER: But if I’m obtaining a smaller set [of data 

items from a database], isn’t that manipulating or is it not?  I 

understand I’m giving you a hypothetical and putting you on a spot. 

MR. HANFT: What I’m having trouble with is in that 

hypothetical you’re talking about retrieving data from a dataset, but 

then you’re trying to say, well, is that within the definition of a data 

manipulation language?  It’s just kind of slightly apples and oranges 

because the data manipulation language has to have certain 

characteristics and be capable of certain things. 

Taking a dataset and reducing it down to a smaller set 

according to some characteristics is some type of manipulation, but a 



IPR2013-00226 

Patent 7,110,936 B2 

9 

data manipulation language has to be able to do more than just 

retrieve.  It’s got to do more than that. 

Paper 36 (“Tr.”) 38:7-18 (emphasis added).  Fen Hiew, one of the named 

inventors of the ’936 patent, agreed with this understanding.  Ex. 1045, 

47:15-18 (Q: “Would selection of data be a type of manipulation that’s 

performed by a data manipulation system?” A: “Yes”).   

We are not persuaded otherwise by Mr. Zatkovich’s testimony to the 

contrary.  See Ex. 2001 ¶ 19.  Mr. Zatkovich does not explain why retrieving 

data would not be considered manipulation of that data.  Nor does he point 

to any objective evidence to support this conclusion.  And Patent Owner 

does not point to persuasive language in the specification or other evidence 

that supports an interpretation of “data manipulation language” with the 

word “retrieve” removed or qualified as proposed.   

Thus, we decline to alter our preliminary construction of data 

manipulation language by removing or adding a qualification to the word 

“retrieve.”   

b. “directly” 

Although not couched as claim construction, Patent Owner argues that 

a data manipulation language must directly access data in a database.  PO 

Resp. 33, 38-39.  Patent Owner argues that because of this requirement, an 

object-oriented programming language cannot be a data manipulation 

language, even if it includes extensions, such as JDBC [Java Database 

Connectivity] or embedded SQL, for accessing a database.  Id.  In explaining 

this assertion, Mr. Zatkovich testifies that object-oriented programming 

languages facilitate the creation of programs that are a collection of 

interacting objects, as opposed to conventional programming languages, in 



IPR2013-00226 

Patent 7,110,936 B2 

10 

which a program is a list of tasks.  Ex. 2001 ¶ 22.  As part of this paradigm, 

according to Mr. Zatkovich, the object-oriented approach typically places 

data in an object, where the data are not directly accessible by the rest of the 

program, but instead are accessed solely through methods bundled with the 

object.  Id. ¶ 23.  Mr. Zatkovich concludes that “[o]ne skilled in the art 

would not consider C++ and Java [which are object-oriented programming 

languages] to be data manipulation languages since they do not directly 

interact or directly perform data manipulation within databases.”  Id. ¶ 24.   

Patent Owner adds that simply adding database functionality in the 

form of JDBC or embedded SQL to an object-oriented language does not 

convert the language into a data manipulation language.  PO Resp. 38-39.  

Mr. Zatkovich testifies that when SQL is embedded in Java, the Java 

program simply passes the SQL statement to the database system—the 

embedded SQL statement is “processed merely as a text string to be passed 

to the DataBase Management System.”  Ex. 2001 ¶ 47.  According to Patent 

Owner, this shows that it is not actually Java or C++ code accessing data in a 

database, but instead the access is “being performed at and by the database 

itself.”  PO Resp. 39.  Thus, Patent Owner concludes that Java and C++ are 

not data manipulation languages, even when augmented by JDBC or 

embedded SQL.  Id.   

Petitioner argues that a data manipulation language is a language that 

allows a program to simply access data in a database, without the 

requirement that the access be direct.  Reply 9.  According to Petitioner, 

Java and C++ access a database using embedded SQL and JDBC statements.  

Id.  Petitioner relies on statements in the Oracle8 Primer to support this 

assertion.  Id. at 9-10 (quoting Ex. 1013, 225 (“JDBC is an Application 



IPR2013-00226 

Patent 7,110,936 B2 

11 

Programming Interface (API) that enables database access in Java.”), 93, 96, 

226).  In addition, Dr. Roussopoulos testifies that “[e]mbedding SQL allows 

each of [the Java and C++] programming languages to access data in a 

database.”  Ex. 1015 ¶ 114 (citing Ex. 1013, 93, 95, 103, 108, 118, 277, 280, 

281, 294, and 301); see also Ex. 1015 ¶¶ 49-51.  Dr. Roussopoulos also 

states that “Oracle8 Primer discloses that the object-oriented nature of Java 

is no bar to having data manipulation language operations.”  Id. ¶ 52 

(quoting Ex. 1013, 281 (showing that the “select” statement is translated into 

pure Java code), 301 (showing the same for inserting data in a database), 294 

(showing the same for creating database tables and rows)); see also Ex. 1015 

¶ 53 (showing the same for embedded C++). 

We are persuaded by the testimony of Dr. Roussopoulos that a data 

manipulation language does not require direct access to data in a database.  

To the extent that Patent Owner argues that Java and C++ never actually 

retrieve or manipulate data in a database because the embedded functionality 

does not directly access the database, we credit Petitioner’s evidence, 

particularly Exhibit 1013, which supports Dr. Roussopoulos’s conclusion 

that embedded SQL accesses and manipulates data in a database.  All of 

Patent Owner’s evidence to the contrary hinges on the testimony of Mr. 

Zatkovich, which we do not find persuasive.  Mr. Zatkovich’s conclusion 

that access to a database from a data manipulation language must be direct is 

unsupported.  Mr. Zatkovich simply asserts this to be the case, without 

providing credible support.  See Ex. 2001 ¶ 47.   

Patent Owner does not point to persuasive language in the 

specification or other evidence that supports an interpretation of data 

manipulation language restricted to direct access to a database.  In fact, the 



IPR2013-00226 

Patent 7,110,936 B2 

12 

’936 patent discusses, in several places, SQL and Oracle® RDBMS as 

examples of languages to which the invention is targeted.  Ex. 1001 1:20-25; 

1:64-2:3; 8:22-26; 9:47-53; 10:5-7; 16:34-49; 17:17-19.  And the ’936 patent 

does not specify that these languages would be excluded if the database 

access functionality is indirect.  Dr. Roussopoulos agrees, stating that the 

’936 patent’s reference to these languages is consistent with embedding SQL 

in Java or C++.  Ex. 1015 ¶ 54. 

Thus, we decline to alter the interpretation of “data manipulation 

language” by adding a qualification that access to the database be direct.   

c. Conclusion 

For these reasons, we adopt the interpretation of “data manipulation 

language” used in the Decision to Institute—“a programming language used 

to access data in a database, such as to retrieve, insert, delete, or modify data 

in the database.”  We do not adopt any of the modifications to this 

interpretation urged by Patent Owner. 

2. Graphical Representation of Flows 

The term “graphical representation of flows” is recited by every 

challenged claim.  In the Decision to Institute, we interpreted this term as “a 

diagram that depicts a map of the progression (or path) through the source 

code.”  Dec. 8-9.  Patent Owner does not explicitly challenge this 

interpretation, but makes several arguments that amount to a narrowing of 

the interpretation of the term.  We address these arguments here. 

a. “data flows” and “program flows” 

In the Decision to Institute, we explained that the ’936 patent 

explicitly discusses two types of flow diagrams—“program flow diagrams” 

and “data flow diagrams.”  Dec. 8-9 (citing Ex. 1001, 2:38-42).  The ’936 



IPR2013-00226 

Patent 7,110,936 B2 

13 

patent describes a “program flow diagram” as being “comprised of program 

block icons and arrows to depict the code’s program flow” and a “[d]ata 

flow diagram” as “comprised of icons depicting data processing steps and 

arrows to depict the flow of the data through the program.”  Ex. 1001, 2:38-

42.  We were not persuaded, however, that the claim term “graphical 

representation of flows” is restricted to these two types of flow diagrams.  

Dec. 8-9.   

Patent Owner does not explicitly argue otherwise.  Nevertheless, in its 

analysis, Patent Owner often limits the term to either program or data flow 

diagrams.  These arguments are appropriate only for dependent claims 3 

(“wherein the graphical representations of flows depict program flows”) and 

4 (“wherein the graphical representations of data flows are expandable and 

collapsible”).  Patent Owner goes further and applies the narrower 

interpretation to all the claims.  For example, Patent Owner argues that Coad 

does not show “graphical representations of flows” by asserting that the 

“communications shown in Fig. 14 are not directly related to program or 

data flow” and “none of the remaining diagrams of Coad show program or 

data flow.”  PO Resp. 31-32.   

Patent Owner, however, presents no persuasive explanation or 

evidence to support such a narrow interpretation of the claim term “graphical 

representations of flows.”  As we pointed out in the Decision to Institute, 

Patent Owner has not directed us to language in the ’936 patent that limits 

the term to only these two examples.  Nothing in Patent Owner’s response 

brief persuades us otherwise. 



IPR2013-00226 

Patent 7,110,936 B2 

14 

b. “within the retrieved source code” 

Patent Owner argues that the term “graphical representations of 

flows” cannot properly be interpreted without taking into consideration the 

phrase that follows it in the claims—“within the retrieved source code.”  PO 

Resp. 32-33.  According to Patent Owner, because the source code is further 

defined in the claims to be a “data manipulation language,” the “claims 

require that the flows show source code steps actually performing data 

manipulation procedures.”  Id. at 35.  Patent Owner explains that the “intent 

and purpose of the invention is to permit the graphical representation of the 

flow within languages that manipulate data.”  Id. at 36.  Patent Owner also 

points to Figure 19 as showing that the graphical representations depict the 

program flow within the “actual source code that is manipulating the data.”  

Id.  

We agree with Patent Owner that the claim language clearly requires 

the graphical representations of flows to show flows within source code 

created with a data manipulation language.  However, we are not persuaded 

that this requires the flows to show source code steps that are actually 

performing data manipulation.  As described above, we have interpreted data 

manipulation language to be a programming language used to access data in 

a database, such as to retrieve, insert, delete, or modify data in the database.  

Although this interpretation requires that a data manipulation language allow 

a program to be written that manipulates data, the interpretation does not 

limit such a program to source code that manipulates data.  In other words, 

source code written using a data manipulation language performs many 

types of actions, including, but not limited to, manipulating data.   



IPR2013-00226 

Patent 7,110,936 B2 

15 

For example, Figure 20 of the ’936 patent shows a portion of the 

source code being displayed in the graphical representation.  One of the 

function calls listed in the source code is “PRINT,” which is represented in 

the graphical representation as an icon.  It is unclear, however, whether a 

print function is “actual manipulation of data.”  See Tr. 65:19-23 (Q: “In the 

patent in figure 20(a) there is some code, and it has print data.  Is that a data 

manipulation procedure?  I don’t know if printing is manipulating.”  

A: “You’re not going to like my answer, which is I’m not an expert in this 

field, so I can’t answer that.”).  And Patent Owner has not directed us to 

evidence that sheds light on this question. 

Moreover, as discussed above, Patent Owner asserts that retrieving 

data, as in an SQL SELECT statement, is not a manipulation of data.  PO 

Resp. 10-11 (citing Ex. 2001 ¶ 19).  Nevertheless, Patent Owner concedes 

that a program written with a data manipulation language may include 

functions used for retrieving data.  See, e.g., PO Resp. 11 (“The Board’s 

interpretation should be modified to either remove the term ‘retrieve’ or to 

qualify the use of the term retrieve by stating that the retrieval must be 

followed by some manipulation procedure.”).  Thus, it is undisputed that a 

program written using a data manipulation language may contain portions of 

code that perform actions independent from the manipulation of data.  And 

Patent Owner does not point to persuasive language in the ’936 patent or 

other evidence supporting an interpretation that excludes those portions of 

the source code from the graphical representation.  In other words, the 

claims require that the “received source code” is “programmed using one of 

a plurality of types of data manipulation languages,” but nothing in the 



IPR2013-00226 

Patent 7,110,936 B2 

16 

claims requires that the “retrieved source code” contain functionality that 

actually manipulates data.   

Figure 19 does not persuade us otherwise.  Patent Owner has not 

pointed to any indication in the ’936 patent that this figure is meant to limit 

the subject matter of the claims.  To the contrary, the “Brief Description of 

Drawings” clearly identifies all the figures as depicting a preferred 

embodiment of the invention.  Ex. 1001, 3:24-26 (“For a better 

understanding of the invention, reference may be had to a preferred 

embodiment shown in the following drawings.”).  And the “Detailed 

Description” concludes by clarifying that the specific embodiments are not 

limiting.  Id. at 17:62-66 (“While specific embodiments of the present 

invention have been described in detail, it will be appreciated by those 

skilled in the art that various modifications and alternatives to those details 

could be developed in light of the overall teachings of the disclosure.”); 

18:13-17 (“Accordingly, the particular arrangement disclosed is meant to be 

illustrative only and not limiting as to the scope of the invention which is to 

be given the full breadth of the appended claims and any equivalents 

thereof.”).  

Thus, we decline to alter the interpretation of “graphical 

representations of flows” by adding a requirement that the flows show 

source code steps that are actually performing data manipulation. 

c. Actual Pathways 

Petitioner states that Patent Owner improperly suggests that graphical 

representations of flows are limited to the actual path through source code as 

opposed to including all possible pathways through the code.  Reply 8-9.  In 

particular, Petitioner points to Patent Owner’s description of Coad, “[t]he 



IPR2013-00226 

Patent 7,110,936 B2 

17 

concept underlying Coad is limited to depicting all potential (as opposed to 

actual) scenarios within an object-oriented program.”  Reply 8 (citing PO 

Resp. 13).  Patent Owner does not point to persuasive explanation or 

evidence supporting such a limitation.  To the extent that Patent Owner is 

making this argument, we are not persuaded that the term should be so 

limited. 

d. Conclusion 

For these reasons, we adopt the interpretation of “graphical 

representations of flows” used for the Decision to Institute—“a diagram that 

depicts a map of the progression (or path) through the source code.”  We do 

not adopt any of the modifications to this interpretation urged by Patent 

Owner. 

3. Program Flows 

The term “program flows” is recited in dependent claim 3.  In the 

Decision to Institute, we did not explicitly interpret this term as part of the 

claim construction section.  See Dec. 5-10.  In the analysis portion of our 

decision, however, we stated that “Figure 14 [of Coad] depicts the source 

code program’s path of control from one step to another through the 

program—a program flow diagram.”  Dec. 14.  Neither party directly 

challenges this statement.   

Although the ’936 patent does not explicitly define “program flows,” 

it does define the term “program flow diagrams” as “comprised of program 

block icons and arrows to depict the code’s program flow.”  Ex. 1001, 2:38-

40.  The specification then proceeds to use the terms “program flows” and 

“program flow diagrams” interchangeably.  See, e.g., id. at 3:49-51 (“FIG. 9 

is an exemplary screen shot depicting a program flow for a selected file, 



IPR2013-00226 

Patent 7,110,936 B2 

18 

along with arrows that indicate the flow of data within the program flow.”); 

16:3-5 (“By assigning meanings and attributes to tokens 144, the document 

view engine 200 allows the visualizer to create program flows 122 and data 

flows 124.”).   

Thus, we begin with the definition for “program flow diagrams” for 

our interpretation.  Because it is not constructive for the definition of 

“program flows” to include the term “program flow,” we adopt the 

following slightly modified version—“a graphical representation comprised 

of program block icons and arrows to depict the progression of control 

through source code.”   

4. Data Flows 

The term “data flows” is recited by dependent claim 4.  In the 

Decision to Institute, we did not explicitly interpret this term as part of the 

claim construction section.  See Dec. 5-10.  In the analysis portion of our 

decision, when discussing the data flow limitation, we stated that “[w]e are 

not persuaded that [the code view of Antis] is equivalent to a depiction of a 

map of the path of data through the executing source code.”  Dec. 19.  

Petitioner argues that the word “executing” in that statement is improper.  

Reply 4. 

Although the ’936 patent does not explicitly define “data flows,” it 

does define the term “[d]ata flow diagrams” as “comprised of icons 

depicting data processing steps and arrows to depict the flow of the data 

through the program.”  Ex. 1001, 2:40-42.  The specification then proceeds 

to use the terms “data flows” and “data flow diagrams” interchangeably.  

See, e.g., id. at 4:12-13 (“FIG. 17 is an exemplary screen shot depicting a 

data flow for a selected file.”); 16:3-5 (“By assigning meanings and 



IPR2013-00226 

Patent 7,110,936 B2 

19 

attributes to tokens 144, the document view engine 200 allows the visualizer 

to create program flows 122 and data flows 124.”).   

Thus, we begin with the definition for “data flows diagrams,” for our 

interpretation.  Because it is not constructive to interpret the term “data 

flows” by using the phrase “flow of data,” we adopt the following slightly 

modified version—“a graphical representation comprised of icons depicting 

data processing steps and arrows to depict the movement of data through 

source code.” 

B. Overview of Coad 

Coad discloses a software development tool that allows a developer 

simultaneously to view and modify textual and graphical displays of source 

code regardless of the programming language in which the code is written.  

Ex. 1006, Abstract, 4:38-41.  In the Background of the Invention, Coad 

describes conventional software development tools that allow the user to 

view Unified Modeling Language (UML)—a graphical representation or 

model using object-oriented design—and source code at the same time.  Id. 

at 1:47–2:22.   

C. Overview of the Oracle Primers 

The Oracle Primers are books describing the Oracle database system.  

The Oracle8 Primer includes a chapter titled “Embedded SQL,” which refers 

to adding embedded SQL to C++, thus allowing writing application 

programs in C++ that “interact (read and write) with the database.”  Ex. 

1013, 93.  Another chapter, titled “Oracle JDBC” describes JDBC, “an 

Application Programming Interface (API) that enables database access in 

Java” and “consists of a set of classes and interfaces written in Java that 

allow the programmer to send SQL statements to a database server for 



IPR2013-00226 

Patent 7,110,936 B2 

20 

execution and, in the case of an SQL query, to retrieve query results.”  Ex. 

1013, 225.   

D. Alleged Obviousness over Coad and the Oracle Primers 

Petitioner asserts that claim 1 would have been obvious over Coad 

combined with Oracle Primer and Oracle8 Primer.  Petitioner relies on Coad 

for every limitation except that Petitioner relies on the Oracle Primers for 

describing the use of SQL within Java and C++ and thus disclosing the data 

manipulation language limitation.  Pet. 31-32 (citing Ex. 1015 ¶¶ 111-115).  

Petitioner points to Figures 11-17 of Coad as depicting aspects of the view 

for displaying graphical representations of flows in source code.  Pet. 29-30.   

In the Decision to Institute, we determined that Petitioner had shown a 

reasonable likelihood of prevailing on this proposed ground of 

unpatentability.  Dec. 15.  In particular, we determined that Petitioner had a 

reasonable likelihood of prevailing on its assertions that the combination of 

Coad and the Oracle Primers disclosed every limitation of claim 1.  Id. at 12-

14.  We also found reasonable Petitioner’s asserted rationale that a person of 

ordinary skill would have combined the teachings of Coad and the Oracle 

Primers in order to enhance the utility of the programming environment to 

include data manipulation.  Id. at 14-15 (citing Pet. 25); see Ex. 1015 ¶ 115. 

In its response brief, Patent Owner argues that the combination of 

Coad and the Oracle Primers fails to disclose the limitations “graphical 

representations of flows within the retrieved source code” where the source 

code is written in a “data manipulation language.”  PO Resp. 34-42.  Patent 

Owner does not address any other limitations of claim 1 or the rationale to 

combine the references.  Id.  



IPR2013-00226 

Patent 7,110,936 B2 

21 

1. Data Manipulation Language 

Patent Owner argues that Coad combined with the Oracle Primers 

does not describe a data manipulation language because C++ and Java are 

object-oriented languages.  PO Resp. 13, 36-39.  According to Patent 

Owner, combining these languages with embedded SQL or JDBC, as 

disclosed by the Oracle Primers, does not solve the problem because the 

database access is not direct.  Id.   

As described above, our interpretation of the term “data manipulation 

language”—a programming language used to access data in a database, such 

as to retrieve, insert, delete, or modify data in the database—is broad enough 

to encompass object-oriented languages that do not directly access data in a 

database.  We agree with Petitioner that when used with an embedded SQL 

or JDBC API, Java and C++ can be used to access data in a database and 

therefore qualify as data manipulation languages as we have construed that 

term.  See, e.g., Ex. 1015 ¶¶ 49-50 (“Java, C, C++, and other programming 

languages had functions and structures through the use of/embedding of 

SQL statements that allowed the programming language to access data, such 

as to retrieve, insert, delete, or modify data in a database.”). 

2. Graphical Representations of Flows 

Patent Owner also argues that the combination of Coad and the Oracle 

Primers does not disclose the limitation “graphical representations of flows.”  

PO Resp. 40-42.  In particular, Patent Owner asserts that “[i]mplementing 

JDBC or embedded SQL within the environment of Coad would produce, at 

best, a graphical depiction of objects that show undefined external function 

calls, and would fail to show the program or data flow within the string 

quotes being passed to the database.”  PO Resp. 40.   



IPR2013-00226 

Patent 7,110,936 B2 

22 

We are not persuaded by this argument.  First, this argument is based 

on an interpretation of the term “graphical representations of flows” that we 

rejected above.  As explained, the interpretation we adopt is a diagram that 

depicts a map of the progression (or path) through the source code.  This 

interpretation is broad enough to include, but is not limited to, program and 

data flows.  We also reject Patent Owner’s assertion that the graphical 

representation must show flow within source code steps that are actually 

performing data manipulation.  Our interpretation of the term includes, but 

does not require, that the flows are shown within source code that is actually 

performing data manipulation. 

Petitioner relies on Figures 11-17 (depicting UML diagrams) of Coad 

as disclosing graphical representations of flows.  Pet. 28-30.  We agree with 

Petitioner that at least Figures 14 and 17 of Coad disclose graphical 

representations of flows as we have construed that term.  See, e.g., Ex. 1015 

¶¶ 97-98; see also Ex. 1043, 88-89 (describing UML diagrams as showing 

flows).   

Patent Owner concedes that Figure 14 shows communications 

between objects, which “would at best only show program flow in a purely 

object[-]oriented language—between objects.”  PO Resp. 32 (citing Ex. 

2001 ¶ 36).  Nonetheless, Patent Owner asserts that because object messages 

“cannot sensibly be asserted to constitute program or data flow,” Figure 14 

does not show flow through source code.  Id. at 31-32.  Because our 

interpretation of the term is broad enough to encompass flows that are not 

program or data flows, we conclude that Figure 14 discloses graphical 

representations of flows. 



IPR2013-00226 

Patent 7,110,936 B2 

23 

Similarly, Mr. Zatkovich agrees that Figure 17 shows a type of flow—

“Figure 17 can depict a type of flow [], within an object, but only within 

state-based objects.  So it’s a very specialized type of flow in a very limited 

circumstance.”  Ex. 1044, 104:12-17.  Because our interpretation of the term 

is broad enough to encompass flows that are not program or data flows, we 

conclude that Figure 17 discloses graphical representations of flows as well. 

3. Conclusion 

We conclude that a preponderance of the evidence demonstrates that 

claim 1 is unpatentable based on the combination of Coad and the Oracle 

Primers. 

E. Overview of Antis 

Antis relates to visually displaying structural characteristics of a large 

database in various graphical views for development purposes.  Ex. 1005, 

Abstract.  In particular, Antis describes a tool to display the characteristics 

of a database without semantic information such that explicit and implicit 

data structures can readily be observed to facilitate use, development, and 

maintenance of large databases.  Id. 2:25-29.   

F. Alleged Obviousness over Antis and Coad 

As summarized in the table above, Petitioner asserts that claims 1 and 

3-10 would have been obvious over Antis combined with Coad (claims 1, 3, 

5, 6, 8, and 10) or Antis combined with Coad and one other reference 

(claims 4, 7, and 9).  Pet. 41-52.  In the Decision to Institute, we determined 

that Petitioner had shown a reasonable likelihood of prevailing on these 

proposed grounds of unpatentability.  Dec. 18-19.  In particular, we 

determined that Petitioner had a reasonable likelihood of prevailing on its 

assertions that the combination of asserted references discloses every 



IPR2013-00226 

Patent 7,110,936 B2 

24 

limitation of the challenged claims.  Id.  We also found reasonable 

Petitioner’s asserted rationale that a person of ordinary skill would have 

combined the teachings of the references in order to allow for easier source 

code debugging and a more accurate code view display.  Id. at 18 (citing Pet 

18); see also Ex. 1015 ¶¶ 164-67. 

1. Independent Claim 1 

In its response brief, Patent Owner argues that the combination of 

Antis and Coad fails to disclose the limitations (recited in every challenged 

claim) “graphical representations of flows within the retrieved source code” 

where the source code is written in a “data manipulation language.”  PO 

Resp. 42-45.  Patent Owner does not address any other limitations of claim 1 

or Petitioner’s asserted rationale to combine Antis and Coad.  Id.  

a. Data Manipulation Language 

Patent Owner argues that Antis combined with Coad does not describe 

a data manipulation language because Antis instead describes the use of a 

data definition language.  PO Resp. 42-45.  A data definition language is 

designed specifically for describing the relationships between data in a 

database, such as defining data structures and schema.  Id. 

We agree with Patent Owner that a data definition language is 

different than a data manipulation language.  See EX. 1015 ¶ 48 (quoting The 

Authoritative Dictionary of IEEE Standards Terms at 100 (7th 2000) 

(defining data manipulation language followed by (“Contrast: data 

definition language”))).  However, we do not agree that Antis’s disclosure is 

limited to data definition languages.   

Antis also discusses the use of RDBMS.  See, e.g., Ex. 1005, 3:30-35, 

5:4-8; Ex. 1044, 138:19-139:12.  The ’936 patent expressly mentions 



IPR2013-00226 

Patent 7,110,936 B2 

25 

RDBMS several times, stating, for example, that “a need exists for a system 

and method for exchanging, editing, debugging, visualizing[,] and 

developing SAS®, SPSS®, SQL®, DB2 UDB®, Oracle RDBMS®[,] and 

other relational database management software.”  Ex. 1001, 1:66-2:3; see 

also 1:20-25; 8:26-30.  Thus, the ’936 patent contemplates the use of a 

database management system with the invention.  Id.  Mr. Hiew testifies that 

a data management system typically includes a data manipulation language 

to retrieve and manipulate the data from the storage management by the 

system.  Ex. 1045, 47:19-48:12.  Consistent with this definition, Antis shows 

some source code that retrieves data from a database—a data manipulation 

language.  Ex. 1005, Fig. 12 (“/HOME/PYRCE/DATA/EXTRACT/V6.0/”) 

(emphasis added); Ex. 2002, 101:4-102:19 (Dr. Roussopoulos testifying that 

although he is not familiar with the language the source code in Figure 12 is 

in, it shows a database query).   

We are persuaded that Antis discloses a data manipulation language as 

we have construed that term. 

b. Graphical Representations of Flows 

Patent Owner also argues that the combination of Coad and Antis 

does not disclose the limitation “graphical representations of flows.”  PO 

Resp. 42-45.  Patent Owner argues that Antis does not disclose graphical 

representations of flows because it only shows relations within a database, 

not any type of flow.  Id. at 43-44.  We are not persuaded by this argument.  

As explained above, we have found that Coad discloses graphical 

representations of flows, so it is irrelevant that Antis does not also show this 

particular limitation, given that the asserted ground is based on the 

combination of the two references.   



IPR2013-00226 

Patent 7,110,936 B2 

26 

c. Conclusion 

We conclude that a preponderance of the evidence demonstrates that 

independent claim 1 is unpatentable based on the combination of Antis and 

Coad. 

2. Claims 5, 6, 8, and 10 

Claims 5, 6, and 8 depend directly from independent claim 1.  Claim 

10 depends from claim 8.  Patent Owner does not separately argue the 

limitations added by these dependent claims.  After considering all the 

papers filed in this proceeding, we are persuaded that dependent claims 5, 6, 

8, and 10 are unpatentable based on the combination of Antis and Coad for 

the reasons argued by Petitioner. 

3. Claim 3 

Claim 3 depends directly from claim 1 and adds the limitation 

“wherein the graphical representations of flows depict program flows.”  

Because claim 3 specifically limits the graphical representations to program 

flows, we revisit some of Patent Owner’s arguments that we did not find 

persuasive when applied to the broader term.  In other words, although we 

determined above that Coad discloses graphical representations of flows, we 

must now determine whether Coad shows program flows as we construe that 

term—a graphical representation comprised of program block icons and 

arrows to depict the progression of control through source code.   

In our Decision to Institute, we stated that “Figure 14 [of Coad] 

depicts the source code program’s path of control from one step to another 

through the program—a program flow diagram.”  Dec. 14.  We based this 

determination on Coad’s description that Figure 14, showing a sequence 

diagram, depicts “the time ordering of messages along the vertical axis” 



IPR2013-00226 

Patent 7,110,936 B2 

27 

representing “an interaction . . . to effect a desired operation or result.”  Id. 

(citing Ex. 1006, 17:1-15).  Dr. Roussopoulos’s testimony is consistent with 

this determination.  Ex. 1015 ¶¶ 100, 101.  In particular, Dr. Roussopoulos 

states that “Figure 14 depicts a program flow by showing a particular 

sequence of operations, where one operation follows another in time.”  Id. ¶ 

100.  He points to objective evidence supporting his conclusion that a person 

of ordinary skill would understand sequence diagrams to include program 

flows.  Id. ¶ 101 (quoting Mehmet Aksit, et. al., Use Cases in Object-

Oriented Software Development, AMIDST, Feb. 5, 1999, at 10-11); see also 

id. ¶ 102.   

Patent Owner argues that Figure 14 does not disclose program flows 

because “the sequence diagrams show the communications that occur 

between objects, not the flow of program control between objects, nor the 

flow of data being manipulated by the objects.”  PO Resp. 31.  Mr. 

Zatkovich testifies similarly, stating that “sequence diagrams show the 

communications between active objects” and there is “nothing in this type of 

model representation that is intended to show how data flows.”  Ex. 2001 

¶¶ 28-29.  Thus, according to Mr. Zatkovich, “one skilled in the art 

reviewing Fig. 14 and the accompanying text would not conclude that this 

discloses program or data flow in Java or C++, nor program or data flow in a 

data manipulation language.”  Id. ¶ 30. 

We are persuaded that a person of ordinary skill in the art would 

conclude that Figure 14 discloses program flows as we have construed that 

term.  Patent Owner does not persuasively address the language of Coad 

itself—that sequence diagrams “emphasize the time ordering of messages 

along the vertical access” (Ex. 1006, 17:11-15), and thus depict the 



IPR2013-00226 

Patent 7,110,936 B2 

28 

progression of control through the source code of an object.  Moreover, 

Patent Owner does not persuasively address the supporting evidence stating 

that “[t]he flow of control in use cases can be displayed in interaction 

diagrams, especially the sequence diagrams.”  Ex. 1015 ¶ 101 (emphasis 

omitted).   

As between the conflicting evidence on this point, we credit 

Petitioner’s evidence, particularly Dr. Roussopoulos’s testimony, which is 

supported by objective evidence.  All of Patent Owner’s evidence, to the 

contrary, hinges on the testimony of Mr. Zatkovich, which we do not find 

persuasive on this point.  Mr. Zatkovich’s conclusion that a person of 

ordinary skill would not conclude that Figure 14 depicts program flows is 

unsupported.  Mr. Zatkovich simply asserts this to be the case, without 

providing credible support.  See Ex. 2001 ¶¶ 28-30.   

We conclude that a preponderance of the evidence demonstrates that 

claim 3 is unpatentable based on the combination of Antis and Coad. 

4. Claim 4 

Petitioner asserts that claim 4 would have been obvious over Antis, 

Coad, and Burkwald.  Pet. 52-53.  Claim 4 depends from claim 1 and adds 

the limitation that “the graphical representations of data flows are 

expandable and collapsible.”  Petitioner relies on Burkwald—a patent 

directed to a “system for visually representing modification information 

about a[] characteristic-dependent information processing system”—as 

disclosing this limitation.  See id. at 52 (citing Ex. 1007, 14:43 – 15:4); Ex. 

1007, Title.  Petitioner explains that a person of ordinary skill in the art 

would have had a reason to combine the three references because they are all 

related to software development tools that provide visual representations of 



IPR2013-00226 

Patent 7,110,936 B2 

29 

source code.  Pet. 19.  According to Petitioner, Burkwald’s teaching of 

expanding and collapsing graphical representations of flows would have 

provided a developer with flexibility in the amount of detail shown in the 

view.  Id. at 19-20.  Patent Owner argues that the combination of Coad, 

Antis, and Burkwald does not disclose “data flows,” but Patent Owner does 

not address any of the other limitations added by claim 4 or the rationale to 

combine the references.  See PO Resp. 45-47. 

Much like claim 3, claim 4 specifically limits the graphical 

representations, here to data flows.  Thus, we must determine whether Coad 

shows data flows as we construe that term—a graphical representation 

comprised of icons depicting data processing steps and arrows to depict the 

movement of data through source code.   

Petitioner argues that the UML sequence and collaboration diagrams 

of Coad show data flows.  Pet. 43, 52-53; Reply 7.  Consistent with this 

assertion, Dr. Roussopoulos explains that a person of ordinary skill in the art 

would understand Figure 14 to depict data flows.  Ex. 1015 ¶¶ 97-98.  

According to Dr. Roussopoulos, “[t]he person of ordinary skill in the art 

would thus understand Figure 14 of Coad to disclose a graphical 

representation of data flow because it shows which pieces of data (i.e., the 

data that is passed to the functions) are accessed by which pieces of source 

code (i.e., the source code comprising the functions).”  Id. ¶ 98.   

We are not persuaded by Dr. Roussopoulos’s unsupported conclusions 

on this point.  For example, although his testimony addresses part of our 

interpretation of the term “data flows”—“arrows to depict the movement of 

data through source code,” his testimony does not explain how Coad depicts 

“icons depicting data processing steps.”  Conversely, Dr. Roussopoulos 



IPR2013-00226 

Patent 7,110,936 B2 

30 

explicitly states that “[i]n Figure 14 of Coad, the horizontal dimension 

represents different objects” and “[i]n transitioning between the objects of 

the horizontal dimension, various functions are invoked.”  Id.  Consistent 

with this testimony, Figure 14 appears to show “various functions” using 

arrows and objects using icons, but it is unclear that any icons represent 

“data processing steps” as required.   

 Dr. Roussopoulos also testifies that “a person of ordinary skill in the 

art would understand the statechart diagram of Figure 16 to disclose both 

data flows and program flows.”  Id. ¶ 103.  This testimony relies on 

evidence that “a statechart diagram can be translated into a data flow 

diagram” leading a person of ordinary skill in the art to “understand that data 

flow must necessarily be depicted in a statechart diagram.”  Id. ¶ 104.  Coad, 

however, explains that Figure 16 depicts “the sequences of states 1602 that 

an object or interaction goes through during its life.”  Ex. 1006, 17:16-20.  

Dr. Roussopoulos does not explain how this figure shows “icons depicting 

data processing steps.”  Dr. Roussopoulos’s testimony that Figure 17, an 

activity diagram, depicts data flows suffers from the same problem.  Id. 

¶ 107.
2
   

In its reply brief, Petitioner adds that the UML diagrams of Coad 

(Figures 14-17) depict the same types of data flows as shown in Figures 8-2 

and 8-3 of the UML Manual (Ex. 1043).  Reply 6.  The figures depicted in 

the UML Manual, however, suffer from the same problem as we have 

                                           
2
 This conclusion is consistent with our decision declining to institute an 

inter partes review of claim 2 because we were not persuaded that either 

Antis or Coad discloses the claimed “graphical representation” of a “data 

flow.”  Dec. 19. 



IPR2013-00226 

Patent 7,110,936 B2 

31 

identified for Figures 14, 16, and 17 of Coad—they do not appear to show 

“icons representing data processing steps.”   

We conclude that Petitioner has not shown by a preponderance of the 

evidence that dependent claim 4 would have been obvious to a person of 

ordinary skill in the art based on the combined disclosure of Coad, Antis, 

and Burkwald.   

5. Claims 7 and 9 

Claim 7 depends from claim 6 and adds the limitation that “the 

document manager comprises a security layer for managing secure 

connections with the one or more remote computers.”  Petitioner relies on 

Eick—a patent directed to a “system and method for interactive 

visualization, analysis and control of a dynamic database”—as disclosing 

this limitation.  See Pet. 53 (citing Ex. 1008, 4:19-27); Ex. 1008, Title.  

Petitioner explains that a person of ordinary skill in the art would have had a 

reason to combine the three references because they are all related to visual 

representations of source code and data structures.  Pet. 21.  Moreover, 

according to Petitioner, Eick’s teaching of a security layer for managing 

secure connections with remote computers would allow the systems of Antis 

and Coad to be distributed to one or more locations without a substantial 

security risk.  Id. at 21-22.    

Claim 9 depends from claim 8 and adds the limitation that “the 

template manager is adapted to automatically correct segments of the source 

code.”  Petitioner relies on Building Applications—a book including 

information about Microsoft Access 97 software—as disclosing this 

limitation.  Pet. 54-55 (citing Ex. 1011, 52-54).  Petitioner explains that a 

person of ordinary skill in the art would have had a reason to combine the 



IPR2013-00226 

Patent 7,110,936 B2 

32 

three references because they are all related to software development tools 

that provide visual representations of source code.  Pet. 23.  According to 

Petitioner, Building Applications’s teaching of automatically correcting 

segments of source code determined to have errors would simplify the 

debugging of source code in Antis and Coad.  Id. at 23-24.   

Patent Owner does not separately argue these grounds, but instead 

states that “[t]hese claims are patentable for the same reasons as set forth . . . 

with respect to claim 1.”  PO Resp. 47.  For the reasons discussed with 

respect to claim 1, and considering the record, we conclude that a 

preponderance of the evidence demonstrates that claim 7 is unpatentable 

based on the combination of Antis, Coad, and Eick, and claim 9 is 

unpatentable based on the combination of Antis, Coad, and Building 

Applications for the reasons argued by Petitioner. 

G. Patent Owner’s Contingent Motion to Amend Claims 

Patent Owner filed a motion to enter proposed, amended claims 

17-25, contingent on the Board determining that claims 1 and 3-10, 

respectively, are unpatentable.  Paper 20 (“Mot. to Amend”).  Patent Owner 

also filed a Second Contingent Motion to Amend solely addressing potential 

antecedent basis issues in the proposed substitute claims.  Paper 28 (“Second 

Mot. to Amend”).  Because we determine that claims 1, 3, and 5-10 are 

unpatentable, we consider the proposed substitute claims 17, 18, and 20-25.  

However, because we do not determine that claim 4 is unpatentable, we do 

not consider the proposed substitute for that claim—claim 19.  

During an inter partes review, we enter proposed amended claims 

only upon a showing that the amended claims are patentable.  Idle Free Sys. 

v. Bergstrom, Inc., Case IPR2012-00027, slip op. at 33 (PTAB Jan. 7, 2014) 



IPR2013-00226 

Patent 7,110,936 B2 

33 

(Paper 66).  This burden may not be met by merely showing that the 

proposed claims are distinguished over the prior art references applied to the 

original patent claims.  Instead, because there is no examination of the 

proposed claims, the Patent Owner must show that the subject matter recited 

is not taught or suggested by the prior art for us to determine if they comply 

with 35 U.S.C. §§ 102 and 103.  Id. 

Petitioner argues that Patent Owner has not met its burden because it 

makes no statement that the substitute claims are patentable over prior art 

not of record, does not include any discussion of the level of ordinary skill in 

the art, and does not discuss what was previously known regarding the 

features of the substitute claims.  Paper 25 (“Opp.”), 2. 

We agree that, although it is Patent Owner’s burden to show 

patentability over the prior art, Patent Owner does not assert, or direct us to 

evidence, that the IDE claimed in the proposed substitute claims was novel 

over other IDE’s known in the art.  See Tr. 53:15-54:13.  Instead, Patent 

Owner focuses only on Coad, the Oracle Primers, Antis, and U.S. Patent No. 

6,785,668 B1 (“Polo”).  Accordingly, Patent Owner has not met the burden 

it undertook by putting forth the proposed amended claims.  For that reason, 

the Motion to Amend is denied to the extent it seeks entry of substitute 

claims 17, 18, and 20-25.   

Even if Patent Owner’s burden was to show patentability over only 

the prior art of record, we would not be persuaded that the proposed claims 

are patentable.  To the contrary, we are persuaded that the proposed claims 

would have been obvious over Coad combined with either the Oracle 

Primers or Antis. 



IPR2013-00226 

Patent 7,110,936 B2 

34 

1. Proposed Substitute Claim 17 

Claim 17, the proposed substitute for independent claim 1, is identical 

to original claim 1 except that it adds the following limitation to the 

visualizer element:  “the graphical representations of flows showing a flow 

within the retrieved source code between data manipulation procedures in an 

order in which the data manipulation procedures are performed on retrieved 

data.”  Second Mot. to Amend 2 (emphasis omitted). 

Patent Owner argues that proposed substitute claim 17 is patentable 

over Coad combined with the Oracle Primers, Coad combined with Antis, 

and Polo.  Mot. to Amend 8-11.  According to Patent Owner, the added 

limitation “clarifies that the flow is ‘between’ data manipulation procedures 

and that the data manipulation procedures must be performed on ‘retrieved 

data.’”  Mot. to Amend 8-9.   

Patent Owner explains that because the graphical depictions of JDBC 

or embedded SQL in the environment of Coad do not access a database 

directly, they would only show the retrieval of data (“retrieved data”), but 

would not show a subsequent data manipulation step or flow between 

subsequent data manipulation steps.  Id. at 9 (citing Ex. 2001 ¶¶ 67-68).  

Thus, according to Patent Owner, proposed substitute claim 17 would not 

have been obvious over the combination of Coad and the Oracle Primers.  

Id. As for the combination of Antis and Coad, Patent Owner argues that 

neither Coad nor Antis discloses graphical representations of flows of data 

manipulation procedures being performed on retrieved data.  Id. at 9-10 

(citing Ex. 2001 ¶ 69).   

We do not find these arguments persuasive.  As discussed above, we 

have determined that a person of ordinary skill in the art would have found 



IPR2013-00226 

Patent 7,110,936 B2 

35 

independent claim 1 obvious over the combination of Coad and the Oracle 

Primers.  We are not persuaded that the added limitation of proposed 

substitute claim 17 would not have been obvious to a person of skill in the 

art in view of the disclosure of Coad and the Oracle Primers. 

a. Data Manipulation Procedures 

Patent Owner’s arguments all rely on the added limitation requiring 

that a graphical representation show “a flow within the retrieved source code 

between data manipulation procedures.”  Despite the fact that the term “data 

manipulation procedure” is not used in the ’936 patent, Patent Owner does 

not provide a claim construction for the term.  See Mot. to Amend.  Based 

on Patent Owner’s patentability arguments, we infer that a “data 

manipulation procedure” under Patent Owner’s interpretation requires that 

the procedure directly access data in a database.  See Paper 26 (“Mot. to 

Amend Reply”) 2-3 (“A function call in source code to an external program 

is not a ‘data manipulation procedure’ since any data manipulation would 

occur external to the source code.”); Tr. 47:20-24 (“I think that the base 

assumption there is that a function call within C++ would be a data 

manipulation procedure, and I think that’s entirely inconsistent with the 

specification read by one skilled in the art in 2001.”).   

Petitioner argues that this interpretation of “data manipulation 

procedures” is too narrow.  Opp. 5.  Instead, Petitioner asserts that the proper 

interpretation of the claim term is based on the interpretation of “data 

manipulation language.”  Id.  According to Petitioner, because a data 

manipulation procedure requires only a procedure that is used to access data 

in a database, but does not require that access to be direct, a “data 

manipulation procedure” correspondingly is a procedure that accesses data 



IPR2013-00226 

Patent 7,110,936 B2 

36 

in a database, and extends to procedures that access the data indirectly.  Id.  

Patent Owner appears to agree that the interpretation of “data manipulation 

procedure” is tied to the interpretation of “data manipulation language.”  See 

Tr. 49:22-50:9 (“Essentially, once you start defining data manipulation 

languages as broad as C++ with embedded SQL, you’ve eviscerated the 

point of adding this claim limitation.”); see also Mot. to Amend Reply 3 

(referring to “data manipulation procedures” as “DML procedures”).   

For the reasons explained with respect to the interpretation of “data 

manipulation language,” we agree with Petitioner that the broadest 

reasonable interpretation of “data manipulation procedure” does not require 

direct access to a database, and, thus, interpret “data manipulation 

procedure” to mean a procedure used to access data in a database, such as to 

retrieve, insert, delete, or modify data in the database.   

b. Retrieved Data 

Again, the term “retrieved data” is not used in the ’936 patent and 

Patent Owner does not proffer a proposed interpretation of this term.  

However, Patent Owner asserts that data retrieved from a database are no 

longer “retrieved data” once they are returned to the database.  Mot. to 

Amend Reply 3.  Petitioner does not address the construction of this 

element.  We are persuaded that our patentability analysis is unaffected, 

regardless of whether we adopt Patent Owner’s definition.  Therefore, we 

proceed under Patent Owner’s understanding of the term. 

c. Patentability 

We are not persuaded that proposed substitute claim 17 is patentable 

over Coad combined with the Oracle Primers.  Patent Owner argues because 

the “data manipulation procedures are performed on retrieved data,” a C++ 



IPR2013-00226 

Patent 7,110,936 B2 

37 

function call with embedded SQL would not meet the additional claim 

limitation of proposed substitute claim 17.  Mot. to Amend Reply 3; see also 

Tr. 50:10-16.  Specifically, Patent Owner asserts that “one skilled in the art 

would not consider” following an embedded SQL retrieve step with a second 

embedded SQL manipulation step “because that would be inefficient and 

unnecessary.”  Mot. to Amend Reply 3.  Patent Owner, however, does not 

direct us to evidence supporting this attorney argument. 

Petitioner, on the other hand, states that “[a]fter retrieving data, 

additional functional calls may be used to perform data manipulation 

procedures on the retrieved data.”  Opp. 6-7 (citing Ex. 1015 ¶ 53).  We 

credit Dr. Roussopoulos’s testimony on this issue, which he bases on 

language in the Oracle8 Primer.  Ex. 1015 ¶ 53 (citing Ex. 1013, 93, 95, 103, 

118).  We, therefore, are not persuaded that proposed substitute claim 17 is 

patentable over the combination of Coad and the Oracle Primers. 

2. Proposed Substitute Claim 18  

Claim 18, the proposed substitute for dependent claim 3, depends 

from proposed substitute claim 17 and adds the following limitation to claim 

3:  “having procedure icons and arrows that show an actual execution path 

within the retrieved source code as performed on the retrieved data.”  

Second Mot. to Amend 2. 

According to Patent Owner, proposed substitute claim 18 is patentable 

because “[t]he UML diagrams of Coad, at best, disclose all possible 

pathways within the source code, as opposed to the added limitation that 

would only show a graphical execution path of the actual flow of data within 

the source code.”  Mot. to Amend 12.   



IPR2013-00226 

Patent 7,110,936 B2 

38 

We do not agree with Patent Owner’s interpretation of the scope of 

proposed substitute claim 18.  The claim does not require, on its face, that 

only the actual execution path be shown.  Instead, it simply states that such 

“actual execution path” will be shown.  Thus, Patent Owner concedes that 

Coad discloses this limitation by showing all possible pathways, which 

logically includes the actual execution path. 

Thus, we are not persuaded that claim 18 is patentable over Coad 

combined with Antis. 

3. Proposed Substitute Claim 23 

Claim 23, the proposed substitute for dependent claim 8, is written in 

independent form to include the language of proposed substitute claim 17.  

Second Mot. to Amend 3-4.  In addition, proposed substitute claim 23 adds 

the following limitations to the visualizer element: “having data processing 

procedure icons and arrows to depict program flow or icons depicting data 

processing steps and arrows to depict flow of data in an order data 

processing procedures or data processing steps occur” and “the data 

processing procedures or data processing steps being graphically depicted as 

being completed prior to showing flow to a next procedure or step.”  Id. at 4. 

Patent Owner points to Figures 9 and 19 of the original ’936 patent 

application as providing support for the feature that “the data processing 

procedures or data processing steps being graphically depicted as being 

completed prior to showing flow to a next procedure or step.”  Mot. to 

Amend 7-8.  Specifically, Patent Owner asserts that “one skilled in the art 

would understand that the [’936] patent discloses the graphical depiction of 

flow between completed DML procedures or steps.”  Mot. to Amend Reply 

5 (citing Ex. 2001 ¶¶ 72-76). 



IPR2013-00226 

Patent 7,110,936 B2 

39 

Petitioner argues that proposed substitute claim 23 is unpatentable due 

to a lack of written description support because the ’936 patent specification 

does not disclose graphical representations including steps that are 

completed prior to showing flow to the next step.  Opp. 13-14.  Addressing 

Mr. Zatkovich’s testimony on the issue, Petitioner argues that the testimony 

describes aspects of the underlying source code from which a flow diagram 

may be created, but does not point to any particular feature of the figures or 

any particular language in the ’936 patent application that depicts this 

limitation.  Id. at 14. 

A motion to amend must set forth the support in the original 

disclosure of the patent for each claim that is added or amended and the 

support in an earlier-filed disclosure for which the benefit of the filing date 

of the earlier filed disclosure is sought.  37 C.F.R. § 42.221(b).  We agree 

with Petitioner that Patent Owner’s Motion to Amend fails to show where 

the ’936 patent supports the limitation “the data processing procedures or 

data processing steps being graphically depicted as being completed prior to 

showing flow to a next procedure or step.”  

As an initial matter, Patent Owner does not explain what is meant by 

“graphically depicted as being completed.”  This language is not found in 

the specification of the ’936 patent, and Patent Owner does not direct us to 

language in the ’936 patent that sheds light on the meaning of this phrase.  In 

support of the Motion to Amend, Patent Owner directs us to the declaration 

of Mr. Zatkovich.  Ex. 2001.  Mr. Zatkovich, however, also does not explain 

what meaning a person of ordinary skill in the art would give to the phrase.  

Without such explanation, Patent Owner has neither provided a sufficient 



IPR2013-00226 

Patent 7,110,936 B2 

40 

explanation of the additional claim language nor established sufficient 

written description support for such language. 

Moreover, in the Motion to Amend, Patent Owner does not identify 

specifically what portion of the specification actually supports this 

limitation.  See, e.g., Mot. to Amend 7 (“The limitations [of claim 23] are 

supported by the original specification, page 3, line 23 to page 4, line 2; page 

28, lines 1—16; page 29, lines 3-6; and Figs. 9, 17, and 19.”).  In its Reply, 

Patent Owner asserts that Figure 19 of the ’936 patent shows source code in 

the bottom of the window “and the corresponding graphical representation 

of flow between completed DML procedures in the top window.”  Mot. to 

Amend Reply 5.  Patent Owner adds that the specification states that the 

visualizer window represents “the procedures and data blocks as program 

flow icons 126.”  Id. (emphasis omitted).  Nothing in this language explains 

how any of the figures of the ’936 patent “graphically depict [a procedure] 

as being completed.”  Patent Owner directs us to testimony of Mr. Zatkovich 

stating that Figure 9 depicts a “simple flow” where “[e]ach step is a process 

that begins when the process receives an[] input and terminates when the 

outputs are sent to another step.”  Ex. 2001 ¶ 73.  However, we are not 

persuaded by this testimony that Figure 9 provides sufficient support for this 

limitation.  For example, it is unclear how Figure 9 “graphically depicts [a 

procedure] as being completed.” 

Thus, we are not persuaded that claim 23 is patentable over Coad 

combined with Antis. 

4. Proposed Substitute Claims 20-22, 24, and 25 

Patent Owner argues that proposed substitute claims 20-22, 24, and 25 

are patentable over the prior art for the same reason as proposed substitute 



IPR2013-00226 

Patent 7,110,936 B2 

41 

claims 17 and 23, and does not present separate arguments as to the alleged 

patentability of these claims.  Mot. to Amend 14.  For the reasons discussed 

above, we are not persuaded by these arguments.  Thus, we are not 

persuaded that Patent Owner has met its burden to show that proposed 

substitute claims 20-22, 24, and 25 are patentable over the prior art. 

III.   CONCLUSION 

Petitioner has shown, by a preponderance of the evidence, that the 

challenged claims are unpatentable based on the following grounds:  

(1) claim 1 would have been obvious over Coad combined with Oracle 

Primer and Oracle8 Primer; (2) claims 1, 3, 5, 6, 8, and 10 would have been 

obvious over Antis combined with Coad; (4) claim 7 would have been 

obvious over Antis combined with Coad and Eick; and (5) claim 9 would 

have been obvious over Antis combined with Coad and Building 

Applications.   

Petitioner has not shown that claim 4 is unpatentable.  Claims 2 and 

11-16 are not at issue in this trial.
3
 

Patent Owner has not shown that its proposed substitute claims 17, 18, 

and 20-25 are patentable over the prior art. 

Accordingly, it is 

ORDERED that claims 1, 3, and 5-10 of the ’936 patent are 

determined to be unpatentable; 

FURTHER ORDERED that Patent Owner’s Motion to Amend Claims 

is denied; and 

                                           
3
 In the Decision to Institute, we declined to institute an inter partes review 

of claims 2 and 11-16 because we were not persuaded that Petitioner had 

shown that there was a reasonable likelihood of prevailing on its challenges 

to these claims.  Dec. 11, 19, 21. 



IPR2013-00226 

Patent 7,110,936 B2 

42 

FURTHER ORDERED that because this is a final written decision,  

parties to the proceeding seeking judicial review of the decision must 

comply with the notice and service requirements of 37 C.F.R. § 90.2. 

 

  



IPR2013-00226 

Patent 7,110,936 B2 

43 

PETITIONER: 

 

John Biernacki 

David Cochran 

John Marlott 

Joshua Nightingale 

Jones Day 

jvbiernacki@jonesday.com 

dcochran@jonesday.com 

jamarlott@jonesday.com 

jrnightingale@jonesday.com 

 

PATENT OWNER: 

 

George Yu 

Laura Brutman  

James Hanft 

 Schiff Hardin LLP 

 gyu@schiffhardin.com 

 lbrutman@schiffhardin.com 

 jhanft@schiffhardin.com 


