US010433776B2

a2 United States Patent

Al-Ali

ao) Patent No.: US 10,433,776 B2
45) Date of Patent: *Oct. 8, 2019

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

LOW POWER PULSE OXIMETER
Applicant: Masimo Corporation, Irvine, CA (US)

Inventor: Ammar Al-Ali, Tustin, CA (US)

Assignee: MASIMO CORPORATION, Irvine,
CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 16/174,144
Filed:  Oct. 29, 2018

Prior Publication Data

US 2019/0069814 Al Mar. 7, 2019

Related U.S. Application Data

Continuation of application No. 15/820,082, filed on
Nov. 21, 2017, which is a continuation of application
No. 13/908,957, filed on Jun. 3, 2013, now Pat. No.
9,848,806, which is a continuation of application No.
11/939,519, filed on Nov. 13, 2007, now Pat. No.
8,457,703, which is a continuation of application No.
10/785,573, filed on Feb. 24, 2004, now Pat. No.
7,295,866, which is a continuation of application No.

(Continued)
Int. CL.
AG6IB 5/1455 (2006.01)
U.S. CL
CPC ... A61B 5/1455 (2013.01); A61B 5/14551

(2013.01); A461B 2560/0209 (2013.01)
Field of Classification Search
CPC .. A61B 5/00; A61B 5/02; A61B 5/021; A61B

(56)

EP
WO

5/0205; A61B 5/03; A61B 5/04; A61B
5/0059; A61B 5/08; A61B 5/103; A61B
5/0093; A61B 5/68; A61B 5/145; A61B
5/1455; A61B 5/14551
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,907,183 A * 3/1990 Tanaka ...................... GO6F 1/30
365/229

4,960,128 A 10/1990 Gordon et al.
4,964,408 A 10/1990 Hink et al.

(Continued)

FOREIGN PATENT DOCUMENTS

0872 210 A1 10/1998
WO 99/63883 12/1999

OTHER PUBLICATIONS

US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)

(Continued)

Primary Examiner — Eric F Winakur

Assistant Examiner — Chu Chuan Liu

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear, LLP

&7

ABSTRACT

A pulse oximeter may reduce power consumption in the
absence of overriding conditions. Various sampling mecha-
nisms may be used individually or in combination. Various
parameters may be monitored to trigger or override a
reduced power consumption state. In this manner, a pulse
oximeter can lower power consumption without sacrificing
performance during, for example, high noise conditions or
oxygen desaturations.
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LOW POWER PULSE OXIMETER

REFERENCE TO RELATED APPLICATIONS

Any and all applications for which a foreign or domestic
priority claim is identified in the Application Data Sheet as
filed with the present application are incorporated by refer-
ence under 37 CFR 1.57 and made a part of this specifica-
tion.

BACKGROUND OF THE INVENTION

Pulse oximetry is a widely accepted noninvasive proce-
dure for measuring the oxygen saturation level of a person’s
arterial blood, an indicator of their oxygen supply. Oxygen
saturation monitoring is crucial in critical care and surgical
applications, where an insufficient blood supply can quickly
lead to injury or death. FIG. 1 illustrates a conventional
pulse oximetry system 100, which has a sensor 110 and a
monitor 150. The sensor 110, which can be attached to an
adult’s finger or an infant’s foot, has both red and infrared
LEDs 112 and a photodiode detector 114. For a finger, the
sensor is configured so that the LEDs 112 project light
through the fingernail and into the blood vessels and capil-
laries underneath. The photodiode 114 is positioned at the
finger tip opposite the fingernail so as to detect the LED
emitted light as it emerges from the finger tissues. A pulse
oximetry sensor is described in U.S. Pat. No. 6,088,607
entitled “Low Noise Optical Probe,” which is assigned to the
assignee of the present invention and incorporated by ref-
erence herein.

Also shown in FIG. 1, the monitor 150 has LED drivers
152, a signal conditioning and digitization front-end 154, a
signal processor 156, a display driver 158 and a display 159.
The LED drivers 152 alternately activate the red and IR
LEDs 112 and the front-end 154 conditions and digitizes the
resulting current generated by the photodiode 114, which is
proportional to the intensity of the detected light. The signal
processor 156 inputs the conditioned photodiode signal and
determines oxygen saturation based on the differential
absorption by arterial blood of the two wavelengths emitted
by the LEDs 112. Specifically, a ratio of detected red and
infrared intensities is calculated by the signal processor 156,
and an arterial oxygen saturation value is empirically deter-
mined based on the ratio obtained. The display driver 158
and associated display 159 indicate a patient’s oxygen
saturation, heart rate and plethysmographic waveform.

SUMMARY OF THE INVENTION

Increasingly, pulse oximeters are being utilized in por-
table, battery-operated applications. For example, a pulse
oximeter may be attached to a patient during emergency
transport and remain with the patient as they are moved
between hospital wards. Further, pulse oximeters are often
implemented as plug-in modules for multiparameter patient
monitors having a restricted power budget. These applica-
tions and others create an increasing demand for lower
power and higher performance pulse oximeters. A conven-
tional approach for reducing power consumption in portable
electronics, typically utilized by devices such as calculators
and notebook computers, is to have a “sleep mode” where
the circuitry is powered-down when the devices are idle.

FIG. 2 illustrates a sleep-mode pulse oximeter 200 uti-
lizing conventional sleep-mode power reduction. The pulse
oximeter 200 has a pulse oximeter processor 210 and a
power control 220. The power control 220 monitors the
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2

pulse oximeter output parameters 212, such as oxygen
saturation and pulse rate, and controls the processor power
214 according to measured activity. For example, if there is
no significant change in the oxygen saturation value over a
certain time period, the power control 220 will power down
the processor 210, except perhaps for a portion of memory.
The power control 220 may have a timer that triggers the
processor 210 to periodically sample the oxygen saturation
value, and the power control 220 determines if any changes
in this parameter are occurring. If not, the power control 220
will leave the processor 210 in sleep mode.

There are a number of disadvantages to applying con-
sumer electronic sleep mode techniques to pulse oximetry.
By definition, the pulse oximeter is not functioning during
sleep mode. Unlike consumer electronics, pulse oximetry
cannot afford to miss events, such as patient oxygen desatu-
ration. Further, there is a trade-off between shorter but more
frequent sleep periods to avoid a missed event and the
increased processing overhead to power-up after each sleep
period. Also, sleep mode techniques rely only on the output
parameters to determine whether the pulse oximeter should
be active or in sleep mode. Finally, the caregiver is given no
indication of when the pulse oximeter outputs were last
updated.

One aspect of a low power pulse oximeter is a sensor
interface adapted to drive a pulse oximetry sensor and
receive a corresponding input signal. A processor derives a
physiological measurement corresponding to the input sig-
nal, and a display driver communicates the measurement to
a display. A controller generates a sampling control output to
at least one of said sensor interface and said processor so as
to reduce the average power consumption of the pulse
oximeter consistent with a predetermined power target.

In one embodiment, a calculator derives a signal status
output responsive to the input signal. The signal status
output is communicated to the controller to override the
sampling control output. The signal status output may indi-
cate the occurrence of a low signal quality or the occurrence
of a physiological event. In another embodiment, the sensor
interface has an emitter driver adapted to provide a current
output to an emitter portion of the sensor. Here, the sampling
control output determines a duty cycle of the current output.
In a particular embodiment, the duty cycle may be in the
range of about 3.125% to about 25%.

In another embodiment, the sensor interface has a front-
end adapted to receive the input signal from a detector
portion of the sensor and to provide a corresponding digi-
tized signal. Here, the sampling control output determines a
powered-down period of the front-end. A confidence indi-
cator responsive to a duration of the powered-down period
may be provided and displayed.

In yet another embodiment, the pulse oximeter comprises
a plurality of data blocks responsive to the input signal,
wherein the sampling control output determines a time shift
of successive ones of the data blocks. The time shift may
vary in the range of about 1.2 seconds to about 4.8 seconds.

An aspect of a low power pulse oximetry method com-
prises the steps of setting a power target and receiving an
input signal from a pulse oximetry sensor. Further steps
include calculating signal status related to the input signal,
calculating power status related to the power target, and
sampling based upon the result of the calculating signal
status and the calculating power status steps.

In one embodiment, the calculating signal status step
comprises the substeps of receiving a signal statistic related
to the input signal, receiving a physiological measurement
related to the input signal, determining a low signal quality



US 10,433,776 B2

3

condition from the signal statistic, determining an event
occurrence from the physiological measurement, and indi-
cating an override based upon the low signal quality con-
dition or the event occurrence. The calculating power status
step may comprise the substeps of estimating an average
power consumption for at least a portion of the pulse
oximeter, and indicating an above power target condition
when the average power consumption is above the power
target. The sampling step may comprise the substep of
increasing sampling as the result of the override. The
sampling step may also comprise the substep of decreasing
sampling as the result of the above power target condition,
except during the override.

Another aspect of a low power pulse oximetry method
comprises the steps of detecting an override related to a
measure of signal quality or a physiological measurement
event, increasing the pulse oximeter power to a higher power
level when the override exists, and reducing the pulse
oximeter power to a lower power level when the override
does not exist. The method may comprise the further steps
of predetermining a target power level for a pulse oximeter
and cycling between the lower power level and the higher
power level so that an average pulse oximeter power is
consistent with the target power level.

In one embodiment, the reducing step comprises the
substep of decreasing the duty cycle of an emitter driver
output to the sensor. In another embodiment, the reducing
step comprises the substep of powering-down a detector
front-end. A further step may comprise displaying a confi-
dence indicator related to the duration of the powering-down
substep. In yet another embodiment, the reducing step
comprises the substep of increasing the time-shift of post-
processor data blocks.

Another aspect of a low power pulse oximeter comprises
a sensor interface adapted to receive an input signal from a
sensor, a signal processor configured to communicate with
the sensor interface and to generate an internal parameter
responsive to the input signal, and a sampling controller
responsive to the internal parameter so as to generate a
sampling control to alter the power consumption of at least
one of the sensor interface and the signal processor. The
signal processor may be configured to generate an output
parameter and the sampling controller may be responsive to
a combination of the internal and output parameters so as to
generate a sampling control to alter the power consumption
of at least one of the sensor interface and the signal proces-
sor. The internal parameter may be indicative of the quality
of the input signal. The output parameter may be indicative
of oxygen saturation.

In another embodiment, the sampling controller is respon-
sive to a predetermined power target in combination with the
internal parameter so as to generate a sampling control to
alter the power consumption of at least one of the sensor
interface and the signal processor. The signal processor may
be configured to generate an output parameter and the
sampling controller may be responsive to a combination of
the internal and output parameters and the power target so as
to generate a sampling control to alter the power consump-
tion of at least one of the sensor interface and the signal
processor. The sensor interface may comprise an emitter
driver and the sampling control may modify a duty cycle of
the emitter driver. The sensor interface may comprise a
detector front-end and the sampling control may intermit-
tently power-down the detector front-end. The processor
may generate a plurality of data blocks corresponding to the
input signal, where each of the data blocks have a time shift
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4

from a preceding one of the data blocks, and where the
sampling control may determine the amount of the time
shift.

A further aspect of a low power pulse oximeter comprises
an interface means for communicating with a sensor, a
processor means for generating an internal parameter and an
output parameter, and a controller means for selectively
reducing the power consumption of at least one of the
interface means and the processor means based upon the
parameters. In one embodiment, the interface means com-
prises a driver means for determining the duty cycle of
emitter current to the sensor, the driver means being respon-
sive to the controller means. In another embodiment, the
interface means comprises a detector front-end means for
receiving an input signal from the sensor, the power for the
detector front-end means being responsive to the controller
means. In yet another embodiment, the processor means
comprises a post-processor means for determining a time
shift between data blocks, the post-processor means being
responsive to the controller means. In a further embodiment,
the controller means comprises a signal status calculator
means for generating an indication of a low signal quality or
a physiological event based upon at least one of an internal
signal statistic and an output physiological measurement,
and a control engine means in communications with the
signal status calculator means for generating a sampling
control responsive to the indication. In yet a further embodi-
ment, the controller means comprises a power status calcu-
lator means for generating a power indication of power
consumption relative to a power target, and a control engine
means in communications with the power status calculator
means for generating a sampling control responsive to the
power indication.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a conventional pulse oxi-
meter sensor and monitor;

FIG. 2 is a block diagram of a pulse oximeter having a
conventional sleep mode;

FIG. 3 is a top-level block diagram of a low power pulse
oximeter;

FIG. 4 is a detailed block diagram of a low power pulse
oximeter illustrating a sensor interface, a signal processor
and a sampling controller;

FIG. 5 is a graph of emitter drive current versus time
illustrating variable duty cycle processing;

FIG. 6 is a graph of oxygen saturation versus time
illustrating intermittent sample processing;

FIGS. 7A-B are graphs of data buffer content versus time
illustrating variable data block overlap processing;

FIG. 8 is a graph of power versus time illustrating power
dissipation conformance to an average power target using
variable duty cycle and intermittent sample processing;

FIG. 9 is a state diagram of the sampling controller for
variable duty cycle and intermittent sample processing;

FIG. 10 is a graph of power versus time illustrating power
dissipation using variable data block overlap processing; and

FIG. 11 is a state diagram of the sampling controller for
variable data block overlap processing.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 3 illustrates one embodiment of a low power pulse
oximeter. The pulse oximeter 300 has a sensor interface 320,
a signal processor 340, a sampling controller 360 and a
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display driver 380. The pulse oximeter 300 also has a sensor
port 302 and a display port 304. The sensor port 302
connects to an external sensor, e.g. sensor 110 (FIG. 1). The
sensor interface 320 drives the sensor port 302, receives a
corresponding input signal from the sensor port 302, and
provides a conditioned and digitized sensor signal 322
accordingly. Physiological measurements 342 are input to a
display driver 380 that outputs to the display port 304. The
display port 304 connects to a display device, such as a CRT
or LCD, which a healthcare provider typically uses for
monitoring a patient’s oxygen saturation, pulse rate and
plethysmograph.

As shown in FIG. 3, the signal processor 340 derives the
physiological measurements 342, including oxygen satura-
tion, pulse rate and plethysmograph, from the input signal
322. The signal processor 340 also derives signal statistics
344, such as signal strength, noise and motion artifact. The
physiological measurements 342 and signal statistics 344 are
input to the sampling controller 360, which outputs sam-
pling controls 362, 364, 366 accordingly. The sampling
controls 362, 364, 366 regulate pulse oximeter power dis-
sipation by causing the sensor interface 320 to vary the
sampling characteristics of the sensor port 302 and by
causing the signal processor 340 to vary its sample process-
ing characteristics, as described in further detail with respect
to FIG. 4, below. Advantageously, power dissipation is
responsive not only to output parameters, such as the physi-
ological measurements 342, but also to internal parameters,
such as the signal statistics 344.

FIG. 4 illustrates further detail regarding the sensor inter-
face 320, the signal processor 340 and the sampling con-
troller 360. The sensor interface 320 has emitter drivers 480
and a detector front-end 490. The emitter drivers 480 are
responsive to a sampling control 362, described below, and
provide emitter drive outputs 482. The emitter drive outputs
482 activate the LEDs of a sensor attached to the sensor port
302 (FIG. 3). The detector front-end 490 receives an input
signal 492 from a sensor attached to the sensor port 302
(FIG. 3) and provides a corresponding conditioned and
digitized input signal 322 to the signal processor 340. A
sampling control 364 controls power to the detector front-
end 490, as described below.

As shown in FIG. 4, the signal processor 340 has a
pre-processor 410 and a post processor 430. The pre-
processor 410 demodulates red and IR signals from the
digitized signal 322, performs filtering, and reduces the
sample rate. The pre-processor provides a demodulated
output, having a red channel 412 and an IR channel 414,
which is input into the post-processor 430. The post pro-
cessor 430 calculates the physiological measurements 342
and the signal statistics 344, which are output to a signal
status calculator 450. The physiological measurements 342
are also output to a display driver 380 (FIG. 3) as described
above. A pulse oximetry signal processor is described in
U.S. Pat. No. 6,081,735 entitled “Signal Processing Appa-
ratus,” which is assigned to the assignee of the present
invention and incorporated by reference herein.

Also shown in FIG. 4, the sampling controller 360 has a
control engine 440, a signal status calculator 450 and a
power status calculator 460. The control engine 440 outputs
sampling controls 362, 364, 366 to reduce the power con-
sumption of the pulse oximeter 300. In one embodiment, the
control engine 440 advantageously utilizes multiple sam-
pling mechanisms to alter power consumption. One sam-
pling mechanism is an emitter duty cycle control 362 that is
an input to the emitter drivers 480. The emitter duty cycle
control 362 determines the duty cycle of the current supplied

10

15

20

25

30

35

40

45

50

55

60

65

6

by the emitter drive outputs 482 to both red and IR sensor
emitters, as described with respect to FIG. 5, below. Another
sampling mechanism is a front-end control 364 that inter-
mittently removes power to the detector front-end 490, as
described with respected to FIG. 6, below. Yet another
sampling mechanism is a data block overlap control 366 that
varies the number of data blocks processed by the post
processor 430. These various sampling mechanisms provide
the flexibility to reduce power without sacrificing perfor-
mance during, for example, high noise conditions or oxygen
desaturation events, as described below in further detail.

The sampling controls 362, 364, 366 modify power
consumption by, in effect, increasing or decreasing the
number of input samples received and processed. Sampling,
including acquiring input signal samples and subsequent
sample processing, can be reduced during high signal qual-
ity periods and increased during low signal quality periods
or when critical measurements are necessary. In this manner,
the control engine 440 regulates power consumption to
satisfy a predetermined power target, to minimize power
consumption, or to simply reduce power consumption, as
described with respect to FIGS. 8 and 10, below. The current
state of the control engine is provided as a control state
output 442 to the power status calculator 460. The control
engine 440 utilizes the power status output 462 and the
signal status output 452 to determine its next control state,
as described with respect to FIGS. 9 and 11, below.

Further shown in FIG. 4, the signal status calculator 450
receives physiological measurements and signal statistics
from the post processor 430 and determines the occurrence
of an event or a low signal quality condition. An event
determination is based upon the physiological measure-
ments output 342 and may be any physiological-related
indication that justifies the processing of more sensor
samples and an associated higher power consumption level,
such as an oxygen desaturation, a fast or irregular pulse rate
or an unusual plethysmograph waveform to name a few. A
low signal quality condition is based upon the signal statis-
tics output 344 and may be any signal-related indication that
justifies the processing of more sensor samples and an
associated higher power consumption level, such as a low
signal level, a high noise level or motion artifact to name a
few. The signal status calculator 450 provides the signal
status output 452 that is input to the control engine 440.

In addition, FIG. 4 shows that the power status calculator
460 has a control state input 442 and a power status output
462. The control state input 442 indicates the current state of
the control engine 440. The power status calculator 460
utilizes an internal time base, such as a counter, timer or
real-time clock, in conjunction with the control engine state
to estimate the average power consumption of at least a
portion of the pulse oximeter 300. The power status calcu-
lator 460 also stores a predetermined power target and
compares its power consumption estimate to this target. The
power status calculator 460 generates the power status
output 462 as an indication that the current average power
estimate is above or below the power target and provides this
output 462 to the control engine 440.

FIG. 5 illustrates emitter driver output current versus
time. The graph 500 depicts the combination of a red LED
drive current 510 and an IR drive current 560. The solid line
graph 502 illustrates drive currents having a high duty cycle.
The dashed line graph 504 illustrates drive currents having
a low duty cycle. In a typical pulse oximeter, the duty cycle
of the drive signals is constant and provides sufficient dark
bands 508 to demodulate the detector response into red and
IR channels. The emitter drivers 480 (FIG. 4), however,
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require a significant portion of the overall pulse oximeter
power budget. Intermittently reducing the drive current duty
cycle can advantageously reduce power dissipation without
compromising signal integrity. As an example, a low power
pulse oximeter implementation nominally consuming 500
mw may be able to reduce power consumption on the order
of 70 mw by such drive current duty cycle reductions. In a
preferred embodiment, the drive current duty cycle is varied
within a range from about 25% to about 3.125%. In a more
preferred embodiment, the drive current duty cycle is inter-
mittently reduced from about 25% to about 3.125%. In
conjunction with an intermittently reduced duty cycle or as
an independent sampling mechanism, there may be a “data
off” time period longer than one drive current cycle where
the emitter drivers 480 (FIG. 4) are turned off. The detector
front-end 490 (FIG. 4) may also be powered down during
such a data off period, as described with respect to FIGS. 8
and 9, below.

FIG. 6 is a graph 600 of a pre-processor output signal 610
over time depicting the result of intermittent sampling at the
detector front-end 490 (FIG. 4). The output signal 610 is a
red channel 412 (FIG. 4) or an IR channel 414 (FIG. 4)
output from the pre-processor 410 (FIG. 4), which is input
to the post processor 430 (FIG. 4), as described above. The
output signal 610 has “on” periods 612, during which time
the detector front-end 490 (FIG. 4) is powered-up and “off”
periods 614, during which time the detector front-end 490
(FIG. 4) is powered-down. The location and duration of the
on periods 612 and off periods 614 are determined by the
front-end control 364 (FIG. 4).

Also shown in FIG. 6 is a corresponding timeline 601 of
overlapping data blocks 700, which are “snap-shots” of the
pre-processor output signal 610 over specific time intervals.
Specifically, the post processor 430 (FIG. 4) processes a
sliding window of samples of the pre-processor output
signal 610, as described with respect to FIGS. 7A-B, below.
Advantageously, the post processor 430 (FIG. 4) continues
to function during off portions 614, marking as invalid those
data blocks 640 that incorporate off portions 614. A fresh-
ness counter can be used to measure the time period 660
between valid data blocks 630, which can be displayed on a
pulse oximeter monitor as an indication of confidence in the
current measurements.

FIGS. 7A-B illustrate data blocks 700, which are pro-
cessed by the post processor 430 (FIG. 4). Each data block
700 has n samples 702 of the pre-processor output and
corresponds to a time interval 704 of n/f,, where f, is the
sample frequency. For example, in one embodiment n=600
and £ =62.5 Hz. Hence, each data block time interval 704 is
nominally 9.6 sec.

As shown in FIG. 7A, each data block 700 also has a
relative time shift 706 from the preceding data block, where
is an integral number of sample periods. That is, =m/f,
where m is an integer representing the number of samples
dropped from the preceding data block and added to the
succeeding data block. In the embodiment described above,
m=75 and =1.2 sec, nominally. The corresponding overlap
708 of two adjacent data blocks 710, 720 is (n-m)/{,. In the
embodiment described above, the overlap 708 is nominally
9.6 sec—1.2 sec=8.4 sec. The greater the overlap 708, i.e. the
smaller the time shift 706, the more data blocks there are to
process in the post-processor 430 (FIG. 4), with a corre-
sponding greater power consumption. The overlap 708
between successive data blocks 710, 720 may vary from n-1
samples to no samples, i.e. no overlap. Also, as shown in
FIG. 7B, there may be a sample gap 756 or negative overlap,
i.e. samples between data blocks that are not processed by
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the post-processor, allowing further post-processor power
savings. Sample gaps 756 may correspond to detector front-
end off periods 614 (FIG. 6).

FIG. 8 illustrates an exemplar power consumption versus
time profile 800 for the pulse oximeter 300 (FIG. 3) during
various control engine states. In one embodiment, the con-
trol engine 440 (FIG. 4) has three states related to the
sampling control outputs 362, 364 that affect pulse oximeter
power consumption accordingly. One of ordinary skill in the
art will recognize that the control engine 440 (FIG. 4) may
have greater or fewer states and associated power consump-
tion levels. The profile 800 shows the three control engine
states 810 and the associated power consumption levels 820.
These three states are high duty cycle 812, low duty cycle
814 and data off 818.

In the high duty cycle state 812, the control engine 440
(FIG. 4) causes the emitter drivers 480 (FIG. 4) to turn on
sensor emitters for a relatively long time period, such as
25% on time for each of the red 510 and IR 560 drive
currents. In the low duty cycle state 814, the control engine
440 (FIG. 4) causes the emitter drivers 480 (FIG. 4) to turn
on sensor emitters for a relatively short time period, such as
3.125% of the time for each of the red 510 and IR 560 drive
currents. In the data off state 818, the control engine 440
(FIG. 4) turns off the emitter drivers 480 (FIG. 4) and
powers down the detector front-end 490 (FIG. 4). Also
shown is a predetermined target power consumption level
830. The control engine 440 (FIG. 4) alters the sensor
sampling of the pulse oximeter 300 (FIG. 3) so that the
average power consumption matches the target level 830, as
indicated by the power status output 462 (FIG. 4), except
when overridden by the signal status output 452 (FIG. 4).

As shown in FIG. 8, power consumption changes accord-
ing to the control states 810 during each of the time intervals
850. In a first time interval 851, the pulse oximeter is in a
low duty cycle state 814 and transitions to a high duty cycle
state 812 during a second time interval 852 due to an event
or low quality signal. During a third time interval 853, the
pulse oximeter is able to enter the data off state 818, during
which time no sensor samples are processed. In a forth time
interval 854, sensor samples are again taken, but at a low
duty cycle 814. During the fifth and sixth time intervals 855,
856, sensor samples are shut off and turned on again as the
pulse oximeter 300 (FIG. 3) alternates between the data off
state 818 and the low duty cycle state 814 so as to maintain
an average power consumption at the target level 830.

FIG. 9 illustrates a state diagram 900 for one embodiment
of'the control engine 440 (FIG. 4). In this embodiment, there
are three control states, high duty cycle 910, low duty cycle
940 and data off 970, as described with respect to FIG. 8,
above. If the control state is data off 970, an event triggers
a data-off to high-duty-cycle transition 972. If the control
state is low duty cycle 940, an event similarly triggers a
low-duty cycle to high-duty-cycle transition 942. In this
manner, the occurrence of an event initiates high duty sensor
sampling, allowing high fidelity monitoring of the event.
Similarly, if the control state is low duty cycle 940, low
signal quality triggers a low-duty cycle to high-duty-cycle
transition 942. In this manner, low signal quality initiates
higher duty sensor sampling, providing, for example, a
larger signal-to-noise ratio.

Also shown in FIG. 9, if the control state is high duty
cycle 910 and either an event is occurring or signal quality
is low, then a null transition 918 maintains the high duty
cycle state 910. If the pulse oximeter is not above the power
target for more than a particular time interval, a null tran-
sition 948 maintains the low duty cycle state 940, so that



US 10,433,776 B2

9

sampling is turned-off only when necessary to track the
power target. Further, if the control state is data off 970 and
no time-out has occurred, a null transition 978 maintains the
data off state 970, providing a minimum power consump-
tion.

In addition, FIG. 9 shows that when the control state is in
a high duty cycle state 910, if neither an event nor low signal
quality are occurring, then a high-duty-cycle to low-duty-
cycle transition 912 occurs by default. Also, if the control
state is low duty cycle 940, if neither an event nor low signal
quality are occurring and the power consumption is above
the target level for longer than a particular time interval, a
low-duty-cycle to data-off transition 944 occurs by default,
allowing power consumption to come down to the target
level. Further, if the control state is data off 970, if no event
occurs and a timeout does occur, a data-off to low-duty-cycle
transition 974 occurs by default, preventing excessively long
periods of no sensor sampling.

FIG. 10 illustrates an exemplar power consumption ver-
sus time profile 1000 for the post processor 430 (FIG. 4)
during various control engine states. In one embodiment, the
control engine 440 (FIG. 4) has three states related to the
sampling control output 366 (FIG. 4) that affect post pro-
cessor power consumption accordingly. One of ordinary
skill in the art will recognize that the control engine may
have greater or fewer states and associated power consump-
tion levels. The profile 1000 shows the three control engine
states 1010 and the associated post processor power con-
sumption levels 1020. These three states are large overlap
1012, medium overlap 1014 and small overlap 1018.

As shown in FIG. 10, in the large overlap state 1012, the
control engine 440 (FIG. 4) causes the post processor to
process data blocks that have a comparatively small time
shift 706 (FIG. 7A), and the post processor exhibits rela-
tively high power consumption under these conditions, say
300 mw. In the medium overlap state 1014, the control
engine 440 (FIG. 4) causes the post processor to process data
blocks that have a comparatively larger time shift 706 (FIG.
7A). For example, the data blocks may be time shifted twice
as much as for the large overlap state 1012, and, as such, the
post processor performs only half as many computations and
consumes half the nominal power, say 150 mw. In the small
overlap state 1018, the control engine 440 (FIG. 4) causes
the post processor to process data blocks that have a com-
paratively large time shift. For example, the data blocks may
be time shifted twice as much as for the medium overlap
state 1014. As such, the post processor performs only a
quarter as many computations and consumes a quarter of the
nominal power, say 75 mw, as for the large overlap state
1012. In one embodiment, the control engine 440 (FIG. 4)
alters the data block overlap of the post processor in con-
junction with the duty cycle of the emitter drivers described
with respect to FIG. 5, above, and the front-end sampling
described with respect to FIG. 6, above, so that the average
power consumption of the pulse oximeter matches a target
level indicated by the power status output 462 (FIG. 4) or so
that the power consumption is otherwise reduced or mini-
mized.

In a preferred embodiment, data blocks are time shifted by
either about 0.4 sec or about 1.2 sec, depending on the
overlap state of the control engine 440 (FIG. 4). In a more
preferred embodiment, the data blocks are varied between
about 1.2 sec and about 4.8 sec. In a most preferred
embodiment, the data blocks are time shifted by either about
1.2 sec, about 2.4 sec or about 4.8 sec, depending on the
overlap state of the control engine 440 (FIG. 4). Although
the post-processing of data blocks is described above with
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respect to only a few overlap states and a corresponding
number of particular data block time shifts, there may be
many overlap states and a corresponding range of data block
time shifts.

Further shown in FIG. 10, power consumption 1020
changes according to the control states 1010 during each of
the time intervals 1050. In a first time interval 1052, the post
processor is in a large overlap state 1012 and transitions to
a medium overlap state 1014 during a second time interval
1054, so as to meet a power target during a high signal
quality period, for example. During a third time interval
1055, the post processor enters a small overlap state 1018,
for example to meet a power target by further reducing
power consumption. In a forth time interval 1056, the post
processor transitions back to a large overlap state 1012, such
as during an event or low signal quality conditions.

FIG. 11 illustrates a state diagram 1100 for one embodi-
ment of the control engine 440 (FIG. 4). These states may
function in parallel with, or in combination with, the sam-
pling states described with respect to FIG. 9, above. In the
illustrated embodiment, there are three control states, large
overlap 1110, medium overlap 1140 and small overlap 1170,
as described with respect to FIG. 10, above. If the control
state is small overlap 1170, an event triggers a small overlap
to large overlap transition 1172. If the control state is
medium overlap 1140, an event similarly triggers a medium
overlap to large-overlap transition 1142. In this manner, the
occurrence of an event initiates the processing of more data
blocks, allowing more robust signal statistics and higher
fidelity monitoring of the event. Similarly, if the control state
is medium overlap 1140, low signal quality triggers a
medium overlap to large overlap transition 1142. In this
manner, low signal quality initiates the processing of more
data blocks, providing more robust signal statistics during
lower signal-to-noise ratio periods.

Also shown in FIG. 11, if the control state is large overlap
1110 and either an event is occurring or signal quality is low,
then a null transition 1118 maintains the large overlap state
1110. If the pulse oximeter is not above the power target for
more than a particular time interval, a null transition 1148
maintains the medium overlap state 1140, so that reduced
data processing occurs only when necessary to track the
power target. Further, if the control state is small overlap
1170, a null transition 1178 maintains this power saving state
until the power target is reached or an event or low signal
quality condition occurs.

In addition, FIG. 11 shows that when the control state is
in a large overlap state 1110, if neither an event nor low
signal quality are occurring, then a large overlap to medium
overlap transition 1112 occurs by default. Also, if the control
state is medium overlap 1140, if the power consumption is
above the target level for longer than a particular time
interval and no low signal quality condition or event is
occurring, a medium overlap to small overlap transition
1174 occurs, allowing power consumption to come down to
the target level. Further, if the control state is small overlap
1170, if no event occurs but the power target has been met,
a small overlap to medium overlap transition 1174 occurs.

A low power pulse oximeter embodiment is described
above as having a power status calculator 460 (FIG. 4) and
an associated power target. Another embodiment of a low
power pulse oximeter, however, functions without either a
power status calculator or a power target, utilizing the
sampling controls 362, 364, 366 (FIG. 3) in response to
internal parameters and/or output parameters, such as signal
statistics 344 (FIG. 3) and/or physiological measurements
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342 (FIG. 3) to reduce power consumption except during,
say, periods of low signal quality and physiological events.

One of ordinary skill in the art will recognize that various
state diagrams are possible representing control of the
emitter drivers, the detector front-end and the post-proces-
sor. Such state diagrams may have fewer or greater states
with differing transitional characteristics and with differing
relationships between sampling mechanisms than the par-
ticular embodiments described above. In relatively simple
embodiments of the control engine 440 (FIG. 4), only a
single sampling mechanism is used, such as the sampling
mechanism used to vary the duty cycle of the emitter drivers.
The single sampling mechanism may be based only upon
internal parameters, such as signal quality, only upon output
parameters, such as those that indicate the occurrence of
physiological events, or upon a combination of internal and
output parameters, with or without a power target.

In relatively more complex embodiments of the control
engine 440 (FIG. 4), sampling mechanisms are used in
combination. These sampling mechanisms may be based
only upon internal parameters, only upon output parameters,
or upon a combination of internal and output parameters,
with or without a power target. In a particular embodiment,
the emitter duty-cycle, front-end duty-cycle and data block
overlap sampling mechanisms described above are com-
bined. A “reduced overlap” state relating to the post-pro-
cessing of data blocks is added to the diagram of FIG. 9
between the “low duty cycle” state and the “data off” state.
That is, sampling is varied between a high duty cycle state,
a low duty cycle state, a reduced overlap state and a data off
state in response to signal quality and physiological events,
with or without a power target.

The low power pulse oximeter has been disclosed in detail
in connection with various embodiments. These embodi-
ments are disclosed by way of examples only and are not to
limit the scope of the claims that follow. One of ordinary
skill in the art will appreciate many variations and modifi-
cations.

What is claimed is:

1. A method of operating a patient monitor configured to
monitor at least a pulse rate of a patient by processing
signals responsive to light attenuated by body tissue, the
method comprising:

operating the patient monitor according to a first control

protocol, wherein said operating includes activating a
first control protocol light source in accordance with
the first control protocol, the first control protocol light
source including one or more of a plurality of light
sources;

when operating according to the first control protocol,

calculating, by the patient monitor, measurement val-
ues of the pulse rate, the measurement values respon-
sive to light from the first control protocol light source,
detected by a detector of an optical sensor after attenu-
ation by body tissue of the patient using the patient
monitor;

generating a trigger signal, wherein generating said trig-

ger signal is responsive to at least one of: a comparison
of processing characteristics to a predetermined thresh-
old, a physiological event, or signal quality character-
istics of signals received from the detector;

in response to receiving the trigger signal, operating the

patient monitor according to a second control protocol
different from the first control protocol, wherein said
operating includes activating a second control protocol
light source in accordance with the second control
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protocol, the second control protocol light source
including one or more of the plurality of light sources;
and

when operating the patient monitor according to the

second control protocol, calculating the measurement
values of the pulse rate, the measurement values
responsive to light from the second control protocol
light source, detected by the detector after attenuation
by the body tissue of the patient using the patient
monitor,

wherein said operating of the patient monitor according to

the first control protocol operates the first control
protocol light source according to a first duty cycle and
said operating of the patient monitor according to the
second control protocol operates the second control
protocol light source according to a second duty cycle,
wherein power consumption of the first control proto-
col light source according to the first duty cycle is
different than power consumption of the second control
protocol light source according to the second duty
cycle.

2. The method of claim 1, wherein the first control
protocol light source operates on the first duty cycle having
an active time and an inactive time according to the first
control protocol, wherein the second control protocol light
source operates on the second duty cycle having an active
time and an inactive time according to the second control
protocol, the active time of the first duty cycle having a first
duration and the active time of the second duty cycle having
a second duration, wherein the first duration and the second
duration are different.

3. The method of claim 2, wherein the second duration is
longer than the first duration.

4. The method of claim 1, wherein power consumption
during said operating at the second control protocol is
greater than power consumption during said operating at the
first control protocol.

5. The method of claim 1, wherein said operating the
patient monitor according to the first control protocol con-
sumes a relatively small amount of power, and wherein said
operating the patient monitor according to the second con-
trol protocol consumes a relatively large amount of power.

6. The method of claim 1, wherein said operating the
patient monitor in accordance with the first control protocol
comprises operating the first control protocol light source in
a data off state.

7. The method of claim 1, wherein said signals received
from the detector are responsive to the detected light of the
first control protocol light source or the second control
protocol light source.

8. The method of claim 7, wherein the signal quality
characteristics includes at least one of signal strength, a
presence of noise, or a presence of motion induced noise.

9. The method of claim 1, wherein the physiological event
includes at least one of oxygen desaturation, an abnormal
pulse rate, or an abnormal plethysmograph waveform.

10. The method of claim 9, wherein the physiological
event includes the abnormal pulse rate and wherein the
abnormal pulse rate includes an elevated pulse rate.

11. A patient monitor configured to monitor at least a
pulse rate of a patient by processing signals responsive to
light attenuated by body tissue, the patient monitor com-
prising:

a plurality of light sources;

at least one detector of an optical sensor configured to

receive light after attenuation by body tissue of the
patient using the patient monitor; and
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one or more processors configured to:

operate the patient monitor according to a first control
protocol, wherein said operating includes activating a
first control protocol light source in accordance with
the first control protocol, the first control protocol light
source including one or more of said plurality of light
sources;

when operating according to the first control protocol,
calculate, by the patient monitor, measurement values
of the pulse rate, the measurement values responsive to
light from the first control protocol light source,
detected by said at least one detector after attenuation
by the body tissue of the patient using the patient
monitor;

generate a trigger signal, wherein generation of said
trigger signal is responsive to at least one of: a com-
parison of processing characteristics to a predetermined
threshold, a physiological event, or signal quality char-
acteristics of signals received from the detector;

in response to receiving the trigger signal, operate the
patient monitor according to a second control protocol
different from the first control protocol, wherein said
operation includes activating a second control protocol
light source in accordance with the second control
protocol, the second control protocol light source
including one or more of said plurality of light sources;
and

when operating the patient monitor according to the
second control protocol, calculate the measurement
values of the pulse rate, the measurement values
responsive to light from the second control protocol
light source, detected by said at least one detector after
attenuation by the body tissue of the patient using the
patient monitor,

wherein said operation of the patient monitor according to
the second control protocol operates the first control
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protocol light source according to a first duty cycle and
said operation of the patient monitor according to the
second control protocol operates the second control
protocol light source according to a second duty cycle,
wherein power consumption of the first control proto-
col light source according to the first duty cycle is
different than power consumption of the second control
protocol light source according to the second duty
cycle.

12. The patient monitor of claim 11, wherein said opera-
tion of the first control protocol light source on the first duty
cycle has an active time and an inactive time according to
the first control protocol, wherein said operation of the
second control protocol light source on the second duty
cycle has an active time and an inactive time according to
the second control protocol, wherein the active time of the
first duty cycle has a first duration and the active time of the
second duty cycle has a second duration, wherein the first
duration and the second duration are different.

13. The patient monitor of claim 12, wherein the second
duration is longer than the first duration.

14. The patient monitor of claim 11, wherein power
consumption during said operation at the second control
protocol is greater than power consumption during said
operation at the first control protocol.

15. The patient monitor of claim 11, wherein said opera-
tion of the patient monitor in accordance with the first
control protocol comprises operating the first control pro-
tocol light source in a data off state.

16. The patient monitor of claim 11, wherein said signals
received from the detector are responsive to the detected
light of the first control protocol light source or the second
control protocol light source.
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