US006101502A

United States Patent [ (1] Patent Number: 6,101,502
Heubner et al. [45] Date of Patent: Aug. 8, 2000
[54] OBJECT MODEL MAPPING AND RUNTIME 5,627,979  5/1997 Chang et al. ....cceoevvinriiinnnn. 345/335
ENGINE FOR EMPLOYING RELATIONAL 5,729,739 3/1998 Cautin et al. . ... 707/104
DATABASE WITH OBJECT ORIENTED 5,752,027 5/1998 Familiar ........ ... 395/614
SOFTWARE 5,809,505 9/1998 Lo etal. ... ... 707/102
5,812,996 971998 Rubin €t Al weomrrrrorereeeeeeoeeennene 707/2
[75] Inventors: Robert A. Heubner, Topsfield; Gabriel 5,873,093  2/1999 Williamson et al. ........ccco...... 707/103
Oancea, Lawrence; Robert P. Donald, 5,878,411  3/1999 Burroughs et al. ..ccoeeuveecrcrececn. 707/4
Methuen; Jon E. Coleman, 5,937,409  8/1999 Wetherbee .......... ... 707/103
Chelmsford, all of Mass. 5,956,725  9/1999 Burroughs et al. ........cccoeeeeuee 707/101
[73] Assignee: Ontos, Inc., Lowell, Mass.
’ Primary Examiner—Paul V. Kulik
[21] Appl. No.: 09/161,028 Attorney, Agent, or Firm—Weingarten, Schurgin, Gagnebin
& Hayes LLP
[22] Filed: Sep. 25, 1998
[57] ABSTRACT
Related U.S. Application Data ) ) )
[60] Provisional application No. 60/069,157, Dec. 9, 1997, and A mapping between an object model and a relational data-
provisional application No. 60/059,939, Sep. 26, 1997. base is generated to facilitate access to the relational data-
[S1] 0t CL7 oo GO6F 17/30  Dase. The object model can be created from database schema
] or database schema can be created from the object model.
[52] US. Cle e 707/103; 707/104 . .
. Further, the mapping can be automatically generated. The
[58] Field of Search .........ccccccoeecnenenncneee 707/100-104; . :
Database schema, object model and mapping are employed
709/302 . . e :
to provide interface objects that are utilized by a runtime
[56] References Cited engine to facilitate access to the relational database by object
oriented software applications.
U.S. PATENT DOCUMENTS
5,291,583  3/1994 Bapat ....cccevviiiiiniiniiiinnne 395/500 18 Claims, 6 Drawing Sheets
Runtime
Engine 24 MS Transaction
Server
O
Active SQL
End user 1 22 -
Application Q
. Y Stored proc
o
O
O
Select SQL
BEmp|oyee (O] DEmp]oyee /V‘O_
Y Core Runtime Services Stateless db objects
BDept —»O—— DDept (RiCore.dl) {DbObjs.df)
58 56
Business Objects Data Services Layer
(Client side) (Generated DLL) Classlnfo
OiGenBase.dll
o |Class||0 Runtimelnfo
57 . o
Mapping Information
(RtMap.dil)




6,101,502

Sheet 1 of 6

Aug. 8, 2000

U.S. Patent

pus
Hels
uondiossp
SlWeU

P!

Josloid ]

Jabeuew
aweu
UOREIO[E ﬁmmﬂn ] P
h% sjegauy Juswyedsq]
pLGYIOM awepN)dap
poolosd mm/l pidep == .
| P ] ojoyd ¢ DIA
1ayiop00l014 ] Y OEN diz
aweu
: P! 4/
BWAYOS l\‘ 8z
91 80y uosJadl
"N
8l .
0c—"s153rd0 mozwmzmm I ‘DI
va mo<n_w_m_._.z_ - 3009
NOILYOIddY SN a ¢
@3IN3NO0 JNLINAY nz”_z
123ra0 7 0l XS
ve a0y 1001 | 1300W
9L —t—> BWaYog  |ONIddVN 103rg0



6,101,502

Sheet 2 of 6

Aug. 8, 2000

U.S. Patent

Kouauno ; abem <

Kouauno : Aiees €5

£ OIA

ApnoHdw3 Aeegdw3
Jabeuepjuswyedap
L |
Jobeuew
gokojdw T
saakojduwe _ jdw3o qm dop_| JUUTEdeq)
«0 + 0 l r
<0 E_asmyom_oa 9¢
8¢ A
ajep : pua & [syosloud uogoegaakojdu
alep : yeis
Buwys : uonduosap €5
Buwys : sweu € Av
Buoj : pi
% Mahs qo[q : ojoyd &F
198101d9 Buws : diz &G 1 19PON
Buwys : sweu € [0z 108[g0
buoy : p1 &
Nl TSEER)




U.S. Patent

Map 12

.

Aug. 8, 2000 Sheet 3 of 6 6,101,502
Packagelnfo
versioq:Versiqn 1.*  model_packages Modellnfo
deomLiblD : Uuid | package model

package

package_classes

ancestor class
0.* 1.}
Classinfo

class_inheritance

whereClause : String =
dcomClassID : Uuid

0.x
descendant

class

class_primary_key

class_fetch_matrix | Modelinfo

class

classinfo

class_attributes

req
attribute 1

f
0.*

Kkelyf 1 ) t13t Attrinfo
eylnfo | key_attributes aurioute_| fiags : int=0
~ 1.* 7| default : Variant
order

. data | 1
Zconstraint <<enum>>
NamedConstraint VarType
(from Utl)

FIG. 4




6,101,502

Sheet 4 of 6

Aug. 8, 2000

U.S. Patent

(ip'sfaoaq)
5109[q0 qp SSafsiels

7

T0S 109198
O

00.d paio)s

TOS SARY
O

19ABS
LONoBSURI | SW

(1P dep) S DIAd
uonewuoju| buiddepy —1
— LS
0§ -
ojujpwipuNy 0 _mwm_o_
jIp-eseguadIo
OuLRY
OJUISSED) (110 pajessus9) (episual))
1ke] saoneg Ee(] sj09lqQ sseuisng
9 [
(21000 1deqq -0 1deqig
$80IAISG BlUNY 8
INSS __.; Y 8100 5 S
99
11100 sekoldw3q O sofoidw3g
. O O
S
|| uosida —O- uosiadg
\
Pare
952800 0 uoneoiddy
7z~ 18sn pu3
g suibu3
awnuny



6,101,502

Sheet 5 of 6

Aug. 8, 2000

U.S. Patent

(nn wou)
JueLBA

(depwouy)
ojulRY

<l _Ea_em

sapnqLyje ssefo

(depuol)
OJu|SSBID

( Joslgoanowsy &
()sebueyDaores ©

oju|sse|o

()eneAmyorslleY
(1091300 -

(ut:1) (INNISS @
(p wou) (ur: 1) Augies -
feuy) (1ui 1 1) PALIPOAASS
\ (bui : 1) porBLIBHISS ©
(u 2 1) INNS| -
(ui: 1) Augs| -
(1 2 1) POLIPOIS| &
onEh (yui - 1) paAsLIRYS| @
Jeyo : eep
(s » Wi ezs gy
SNEAMY | | <enieAy>Aelly ] feuybel4
)
ec__um\ sanjeA sbey
(JoneAmVIeD o
(JeneAmvIeS e

j08lgoyi10slqouab

9 ‘OIA

0 = (iduvieoe

SOJU0 J08lqo

Junoo

109000

ased00




6,101,502

Sheet 6 of 6

Aug. 8, 2000

U.S. Patent

abe.ojs juejsisied

0}109[q0Isg K

ay} woyj senquye
pabueyo saeg

T

I~

L ‘DI4d

abeJo)s juessisiad
WO} XUJew Yoo}

se Jayjo Aue

<+ SLUBU 8ASLISY

oy} Aq pouyep 1

OJuIRY 8y}

w0y S)nejep o}

SoneA [EUl 193

.
T

[

.

()amoaxg: 1/

() sebueynanes : 02

-

.

(0=())admvieo : 89

1

() amnoex3 : /9

() enes : 69

~

(Jur) enfeAYaASUISY © 99

(0=()ndmvieo 49

< ‘

()

SNEAIVISS - €9
(Raseg OO “oju[sse|] 1su09) 1981400 : 29

() swenyeb : 69

N
Ny

() uosiadq 19

3014

EIOIS

JSanese

JO9RSIDS

YAIG00

U0S194Q
TR0 (8

U0s14g
aIqOsSaUIShge




6,101,502

1

OBJECT MODEL MAPPING AND RUNTIME
ENGINE FOR EMPLOYING RELATIONAL
DATABASE WITH OBJECT ORIENTED
SOFTWARE

CROSS REFERENCE TO RELATED
APPLICATIONS

A claim of priority is made to U.S. Provisional Patent
Application Serial No. 60/069,157, entitled TIER 3
DESIGN SPECIFICATION, filed Dec. 9, 1997 and incor-
porated herein by reference; and U.S. Provisional Patent
Application Serial No. 60/059,939, entitled DATABASE
SYSTEM ARCHITECTURE, filed Sep. 26, 1997 and incor-
porated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT
N/A.

BACKGROUND OF THE INVENTION

The present invention is generally related to database
technology, and more particularly to interfacing object ori-
ented software applications with relational databases.

The need for interfacing object oriented software appli-
cations with relational databases is well known. One method
of interfacing an object oriented application with a relational
database is to adapt the requests made by the application to
the relational database. More particularly, object operations
are translated into relational database queries. However, this
technique is processor-intensive and sacrifices some of the
advantages associated with the object oriented model. As a
result, the object oriented software application is unable to
function efficiently.

Another method of interfacing an object oriented appli-
cation with a relational database is to translate database
information into a format which is compatible with the
object oriented application. Relational databases typically
separate data into a plurality of tables through a process
known as “normalization” to minimize duplication. A nor-
malized relational database includes a plurality of tables,
wherein each table includes at least one field and one key,
and at least one field in each table is uniquely dependent
upon the key that is associated with the table. These tables
can be translated into objects. However, the objects can
become inaccurate when changes are made to the relational
database. It is known to adapt to changes in the relational
database by performing further translations, but this process
requires substantial effort.

BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, a mapping
between an object model and a relational database and a
runtime engine are employed to facilitate access to a rela-
tional database. The object model can be created from
database schema or database schema can be created from the
object model. Further, the mapping can be automatically
generated. The database schema, object model, and mapping
are employed to provide interface objects that are utilized by
an object oriented software application to access the rela-
tional database.

The present invention provides transparent access to the
relational database. The interface objects and runtime engine
perform read and write operations on the database, including
generation of SQL code. Consequently, neither program-
mers nor software applications need have knowledge of the

10

15

20

25

30

35

40

45

50

55

60

65

2

database structure, the database programming interface,
database security, or the database transaction model in order
to obtain access to the relational database. Further, changes
to the relational database do not always necessitate addi-
tional mapping.

BRIEF DESCRIPTION OF THE DRAWING

Other features and advantages of the present invention
will become apparent in light of the following detailed
description of the drawing, in conjunction with the drawing,
of which:

FIG. 1 is a block diagram that illustrates use of the map
to generate interface objects that are employed by a runtime
engine and an object oriented software application to access
a relational database;

FIG. 2 is a block diagram of database schema;
FIG. 3 is a block diagram of an object model;
FIG. 4 is an object diagram of a mapping;

FIG. 5 is an object diagram of the runtime engine;
FIG. 6 is an object diagram of RtCore.DLL; and

FIG. 7 is a sequence diagram that illustrates operation of
the runtime engine.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, a mapping tool 10 is employed to
generate a map 12 in which relationships between an object
model 14 and schema associated with a relational database
16 are defined. A code generator 18 is employed to examine
the relationships that are defined in the map 12 and a model
object oriented interface associated with an object oriented
software application 22 to generate interface objects 20. The
interface objects 20 are employed by the object oriented
software application 22 to access the relational database 16
via a runtime engine 24, which also uses the map 12 to drive
its processing.

The object model 14 is a template that has a predeter-
mined standardized structure. The illustrated object model
includes attributes and inheritance relationships that are
mapped to relational database features such as tables, rows,
columns, keys, and foreign keys. Mapping the object model
to the relational database schema includes mapping a class
attribute to a table column, mapping a class attribute to a 1-1,
1-N, or N-N relationship, and mapping class inheritance to
rows within a table or across tables.

Referring now to FIGS. 2, 3 and 4, the mapping of a class
attribute to a table column can be described generally as:
Class Attribute—Table Column+Class Key+Joins. Mapping
the class attribute defines where the attributes are read from
and written to. In the illustrated example, the class attribute
CPerson.name 26 maps to table column TPerson.name 28.
The “Class Key” is employed to relate an object instance to
a row in the table. In particular, key values of the class are
mapped to columns in a table that comprise the primary key.
In the illustrated example, CPerson.id 30 maps to TPerson.id
32. “Joins” defines keys between tables within a class. Since
there is only one table in the mapping of Cperson.name to
Tperson.name, no information is required for Joins. If Cper-
son includes two tables, such as Tperson and X, then
mapping Cperson.y to X.y includes: Cperson.y Maps to
X.y+Cperson.id Keys to Tperson.id+Tperson.id Joins to
X.id.

Mapping a class attribute to a 1-1, 1-N, or N-N relation-
ship with at least one other object can be described generally



6,101,502

3

as: Class Attribute—Class+Class Attribute—Foreign Key+
Joins. When an object has associations to other objects, an
attribute in the object points to one or multiple other objects.
If the object points to only one object, there is a one-to-one
(1-1) association between the objects. If an object points to
multiple objects, there is either a one-to-many (1-N) or
many-to-many (N-N) relationship between the objects. In
the illustrated example, CEmployee.dept 34 maps to Cde-
partment 36, where CEmployee 38 to CDepartment 36 is a
one to one relationship. “Foreign Key” represents identify-
ing the foreign key. If CEmployee is related to CDepartment,
there is a foreign key to another table. The foreign key is
identified within one of the tables that comprise Cemployee
and is related to the class attribute Cemployee.dept. This
relationship may be inferred from foreign key information in
the database schema. It is also possible that foreign key
information is missing or that there are many foreign keys in
CEmployee to CDept. Consequently, this step involves
selecting columns that represent the foreign key. In the
illustrated example, Cemployee.dept is associated with
TEmployee.deptid. Once a class attribute is associated with
the foreign key which resides in that class, “Joins” is defined
to associated classes. In the illustrated example, TEmploy-
ee.deptid joins to TDepartment.id is defined.

Mapping class inheritance to rows within a table or across
tables is performed by specifying a WHERE clause on the
class which can distinguish the class from the associated
parent class. This information is stored in the mapping
model.

Table 1 describes how an object model can be mapped to
structures in a database schema.

TABLE 1

In object model: ~ Can be mapped to:

All or selected columns in a table. A WHERE
clause can be associated with a class to
specify which rows of the table belong to the
class.

Multiple tables that are joined by the same
primary key, or by a unique foreign key
relationship. If the same data is stored in
multiple tables, the duplicate columns can be
handled by mapping one of the table columns
for read, and all of the columns for insert

and update.

Multiple tables, possibly in different
databases, which have similar column
definitions (e.g., EastEmployees and
WestEmployees tables can be merged as a single
Employees class).

Multiple tables that are unrelated in the
database, if a logical relationship can be
defined in the mapping.

A single denormalized table. Columns that
contain data for all records are typically
mapped to the superclass, and a WHERE clause
is defined for each subclass as a

discriminator for selecting which rows belong
to the given subclass.

Multiple tables that have the same primary
keys. To ensure uniqueness of records, the
primary keys of “subclass™ tables may also be
defined as foreign keys for the “superclass”
table.

A single denormalized table. Different
columns are mapped to each of the classes.
Typically, there are multiple columns that can
be used as indexes. The subclass mapping has
multiple joins defined, which are used to
traverse each of the inheritance

relationships.

A single class

Single inherited

classes

Multiple
inherited classes

10

15

20

25

30

35

40

45

50

55

60

65

4

TABLE 1-continued

In object model: ~ Can be mapped to:

Multiple indexed tables. The table that is
mapped to the subclass has multiple keys
corresponding to each of the keys in the
superclass tables. To ensure uniqueness of
records in the subclass table, the key on the
subclass table may not be defined as a multi-
column key. If all the data of the superclass
tables is duplicated in the subclass table,
then no join is required to instantiate an
instance of the subclass. However, joins
would be needed to ensure integrity of data
when performing insert, remove, and update
operations.

Object relationships are mapped to the database schema
by defining the joins needed to access related objects or
groups of objects (lists). The joins make use of foreign keys
defined in the tables that are mapped to the related classes.
Table 2 describes mapping of object relationships relative to
the illustrated example.

TABLE 2

Object

Relationship: Mapping Example:

1-1 object
relationship

Department can have only one Manager.

Department class has an object attribute (Manager)
that references only one instance of the Employee
class.

Department table has a foreign key column
(ManagerID) that references only one row in the
Employee table. A join is defined for the Department
class based on a unique foreign key.

Many Employees have one Department.

The Employee class has an object attribute
(Department) that references one instance of the
Department class.

The Employee table has a foreign key column
(DeptID) that references one row in the Department
table. A join is defined for the employee class to
access the one row in the Department table that is
referenced by the foreign key in the Employee

table.

A Department has many Employees.

The Department class has a list attribute (Employees)
that references the related group of employees.
Employee table has a non-unique foreign key that
references the Department table. A join is defined
for the Department class that selects all rows in
Employee that matches the current

Department’s Deptid.

An Employee can have many Projects. A project can
have many Employees.

The Employee class has a list attribute that
references a group of Projects, and the Project class
has a list attribute that references a group of
Employees.

This mapping uses joins based on the join table that
relates the Employee table and the Project table. The
Employee class uses a join to select rows from the
Project table that match the current instance’s
Employeeid. The project class uses a join to select
rows from the Employee table that match the current
instance’s Projectid.

N-1 object
relationship

1-N object
relationship

N-N object
relationship

Table 3 describes how structures in a database schema can
be mapped to structures in an object model.



6,101,502

5

TABLE 3

In a database

schema: Can be mapped to:

Rows, discriminated
by WHERE clause
A single table

All attributes of a single class

All attributes of a class, assuming the other
persistent attributes of the class are mapped to
columns in other tables.

Multiple classes (effectively, a vertical split

of the table)

A single-inherited classes (if at least one
column is appropriate for discriminating
selection of rows for subclasses)
Multiple-inherited classes (if the table has
multiple indexes)

A single class (if the key structure exists to
join row uniquely)

Multiple classes (unrelated, unless key structure
exists to support joins)

A single class that represents a logical merge of
the tables. (NOTE: Primary key values must be
unique between the tables.)

Single inherited classes (each table represents a
class, keys used to define joins between subclass
tables and superclass table.

single class (with joins based on primary key)

Multiple tables,
different columns

Multiple table,
same columns

Multiple tables,
same primary key

If the same data is stored in multiple tables, the duplicate
columns can be handled by mapping one of the table.col-
umns for read, and all of the columns for insert and update.

Schema relationships are mapped directly to object
relationships, either in the form of object attributes or list
attributes. In general, a foreign key in the database schema
is mapped to an inverse relationship between an object
attribute (on the class mapped to the table holding a foreign
key) and a list attribute (on the class mapped to the table
referenced by a foreign key). A join table is mapped to an
inverse relationship between list attributes defined on each
of the classes mapped to the tables related by the join table.

Table 4 describes how relational keys are mapped to
object relationships relative to the illustrated example.

TABLE 4
Schema
Relationship Corresponding Object Relationship
Unique 1-only-1 object relationship represented by

Foreign Key an object attribute with a cardinality of
one on the class mapped to the table that
has the foreign key. This relationship can
also be mapped as an embedded type.

N-1 object relationship, represented by an
object attribute on the class mapped to the
table with the foreign key, and a list
attribute on the class mapped to the table
referenced by the foreign key.

N-N object relationship, represented by a
list attribute on each of the classes mapped
to the tables related by the join. Each

list attribute represents a collection of
references to objects of the other type.

A class mapped to the join table, AND a N-N
object relationship, represented by a list
attribute on each of the classes mapped to
the tables related to the join.

Non-Unique
Foreign Key

Join Table (with
no other
data columns)

Join Table (with
additional data
columns)

Referring to FIGS. 5 and 6, the runtime engine comprises
a plurality of dynamic link libraries (“DLLs”) including:
RtMap.dll 50, RtCore.dll 52, DbObjs.dll 54, OiGenBase.dll
57, and a set of generated DLLs 56. The generated DLLs 56
contain one COM interface and implementation class for
each class defined by a mapping model. A mapping model

10

15

20

25

30

35

40

45

50

55

60

65

6

binary file is generated in parallel with each DLL containing
the mapping information associated with the DLL. The
RtMap.dll 50 implements the classes that can load the
information from the binary file at runtime and make it
available to the runtime interface objects associated with
DLLs 56 and to the client objects 58 of the generated COM
objects through a set of predefined COM interfaces.

Classes OOBase and OObject in RtCore.dll 52 form the
core of the runtime engine 24. The OOBase is a base abstract
class which is used as a base for all the generated imple-
mentation classes. The generated classes are ATL. COM
objects implementing one of the standard IDslObject/
IDslList/IDs1Qlist and one or more of the client interfaces
(e.g., Employee). The ATL implementation classes have
state implemented as a set of attributes of the primitive types
called the “front state” (or the front data set). The OOBase
contains a pointer to the OObject and a public pure virtual
method to access the address of each attribute in the classes
descending from itself. The attributes are indexed according
to the class definition for the object. The OObject class is
abstracting the runtime functionality for a generic object. It
contains a set of attribute info-value pairs (one per attribute,
constructed when the object is initialized to form a “back
state,” or baseline). OObject also has a set of attribute flags
(one per attribute, bitwise or of values like isModified,
isRetrieved, isDirty, isNull and others). One instance of the
OObject is created for every instance of the generated
objects to take care of the interface to the persistent data
storage through a set of DB objects that are MTS stateless,
transactional objects.

FIG. 7 illustrates the sequence of actions that take place
when a business object creates a Dsl object in step 61,
accesses the name property in step 65 and saves the object
in step 69. OObject is constructed when the constructor of
the DPerson (the generated COM implementation class) is
invoked in step 62. The constructor passes as parameters the
appropriate constant ClassInfo reference and a reference to
itself. The OOB;ject initializes all flags and sets the attributes
to the default values as defined in the AttrInfo objects
associated with the ClassInfo in step 63. The GetAttrPtr( )
function defined by the OOBase is employed to get the
attribute address for each attribute in the class in order to
initialize the front set of attributes on the object in step 64.

When the getName (propget) of the generated object is
called in step 65, the generated code checks to see if the
attribute was retrieved. If the attribute was retrieved then the
cached value is returned. Otherwise, Retrieve AttrValue( ) of
the OObject is called in step 66, passing the id of the desired
attribute (name in the example). The OObject will look at the
fetch matrix for this attribute and see what other attributes
should be retrieved with it in step 67 and then determines
what tables and columns are involved, how they are joined
and executes the appropriate SQL statements using the
stateless MTS object. The GetAttrPtr( ) function defined by
the OOBase is employed to get the attribute address for each
attribute in the class in step 68.

When the object is saved in step 69, the generated code
calls the OObject SaveChange( ) method in step 70. The
OObject determines what attributes have changed and,
depending on the concurrency control mode in effect, makes
sure the appropriate locks and transactions are set and
respectively open and then executes the appropriate SQL to
write the data to the persistent storage in step 71.

Referring again to FIGS. 1-4, the runtime engine also
includes a plurality of performance enhancing features such
as optimized data retrieval algorithms. An attribute retrieval



6,101,502

7

can be associated with each attribute to optimize attribute
retrieval from the database. As a default case, all attributes
are retrieved when any one of an object’s attributes are
needed. However, the attribute retrieval list for any attribute
can be edited to specify different attribute retrieval behavior.
For example, a request for an Employee Id may cause the
Photo attribute to be dropped from the attribute retrieval list
on the Id attribute if that data resides in another table and is
only infrequently used. Attribute retrieval lists are a perfor-
mance feature that enable optimized data access by only
doing JOINS and additional SELECT statements when the
data returned by those actions is needed.
Performance is also enhanced by “just in time” data
retrieval. By default, whenever an attribute value is read
from the database, all of the other attributes for that instance
are also read. However, Data Component Developers are
permitted to modify the mapping information for a Data
Component to define an attribute retrieval group for each
attribute of a class that determines which other attribute
values are returned when the requested attribute is read from
the database. This makes it possible to avoid executing
JOINs or SELECTS to retrieve data that may not be needed.
For example, assume that a class, CPerson, has four
attributes: Id, Name, Zip, and Photo, and the Photo attribute
is mapped to a column in a different table from the others.
The Data Component Developer may drop Photo from the
group of attributes that are retrieved when either Id, Name,
or Zip are read. A query is issued to get the Name and Id of
a instance of CPerson where Id=10. Based on the attribute
retrieval information, the run time engine retrieves only the
values for the person.id, person.name, and person.zip
attributes, thus avoiding an unnecessary join to return the
photo attribute value as well.
If an object does not have an attribute in memory when an
attempt is made to use that attribute, the object will issue a
SELECT statement to retrieve the attribute from the data-
base. “Just-in-time™ attribute population allows the object to
be populated with the minimal amount of information nec-
essary for the application while still making any remaining
information available when it is needed.
Lazy reads are also employed to enhance runtime perfor-
mance. When a query is defined to identify objects for
retrieval from the database, the SQL SELECT statement is
not issued immediately. Queries are executed only after an
attempt has been made to use or modify the resulting data.
Having described the embodiments consistent with the
present invention, other embodiments and variations con-
sistent with the present invention will be apparent to those
skilled in the art. Therefore, the invention should not be
viewed as limited to the disclosed embodiments but rather
should be viewed as limited only by the spirit and scope of
the appended claims.
What is claimed is:
1. A method for interfacing an object oriented software
application with a relational database, comprising the steps
of:
selecting an object model;
generating a map of at least some relationships between
schema in the database and the selected object model;

employing the map to create at least one interface object
associated with an object corresponding to a class
associated with the object oriented software applica-
tion; and

10

15

20

25

30

35

40

45

50

55

60

8

utilizing a runtime engine which invokes said at least one
interface object with the object oriented application to
access data from the relational database.

2. The method of claim 1 further including the step of
mapping a class attribute to a table column.

3. The method of claim 1 further including the step of
mapping a class attribute to a 1-1 relationship.

4. The method of claim 1 further including the step of
mapping a class attribute to a 1-N relationship, where N is
an integer that is greater than 1.

5. The method of claim 1 further including the step of
mapping a class attribute to an N-N relationship, where N is
an integer that is greater than 1.

6. The method of claim 1 further including the step of
mapping class inheritance to rows within a table.

7. The method of claim 1 further including the step of
mapping class inheritance across a plurality of tables.

8. The method of claim 1 further including the step of
creating a plurality of said interface objects.

9. The method of claim 8 further including the step of
creating at least one stateful interface object and at least one
stateless interface object.

10. A computer program fixed on a computer-readable
medium and adapted to operate on a computer to provide
access to a relational database for an object oriented soft-
ware application, comprising:

a mapping routine that generates a map of at least some

relationships between schema in the database and a
selected object model;

a code generator that employs said map to create at least
one interface object associated with an object corre-
sponding to a class associated with the object oriented
software application; and

a runtime engine that invokes said at least one interface

object to access data from the relational database.

11. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a table
column.

12. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a 1-1 rela-
tionship.

13. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a 1-N
relationship, where N is an integer that is greater than 1.

14. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to an N-N
relationship, where N is an integer that is greater than 1.

15. The program of claim 10 wherein said mapping
routine is operative to map class inheritance to rows within
a table.

16. The program of claim 10 wherein said mapping
routine is operative to map class inheritance across a plu-
rality of tables.

17. The program of claim 10 wherein said code generator
is operative to create a plurality of said interface objects.

18. The program of claim 17 wherein said code generator
is operative to create at least one stateful interface object and
at least one stateless interface object.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,101,502 Page 1 of 1
DATED : August 8, 2000
INVENTOR(S) : Robert A. Huebner et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
In the heading, “Heubner et al.”, should read -- Huebner et al. --; and

Item [75], Inventors, -“Robert A. Heubner”, should read -- Robert A. Huebner --.

Signed and Sealed this

Twentieth Day of November, 2001

Tikstas P L6l

Artest:

NICHOLAS P. GODICI
Attesting Officer Acting Director of the United States Patent and Trademark Office




	Front Page
	Drawings
	Specifications
	Claims
	Correction

